Oxidation behavior of Incoloy 800 under simulated supercritical water conditions

For a correct design of supercritical water-cooled reactor (SCWR) components, data regarding the behavior of candidate materials in supercritical water are necessary. Corrosion has been identified as a critical problem because the high temperature and the oxidative nature of supercritical water may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2009-03, Vol.385 (2), p.288-293
Hauptverfasser: Fulger, M., Ohai, D., Mihalache, M., Pantiru, M., Malinovschi, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a correct design of supercritical water-cooled reactor (SCWR) components, data regarding the behavior of candidate materials in supercritical water are necessary. Corrosion has been identified as a critical problem because the high temperature and the oxidative nature of supercritical water may accelerate the corrosion kinetics. The goal of this paper is to investigate the oxidation behavior of Incoloy 800 exposed in autoclaves under supercritical water conditions for up to 1440h. The exposure conditions (thermal deaerated water, temperatures of 723, 773, 823 and 873K and a pressure of 25MPa) have been selected as relevant for a supercritical power plant concept. To investigate the structural changes of the oxide films, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and electrochemical impedance spectroscopy (EIS) analyses were used. Results show changes in the oxides chemical composition, microstructure and thickness versus testing conditions (pressure, temperature and time). The oxide films are composed of two layers: an outer layer enriched in Fe oxide and an inner layer enriched in Cr and Ni oxides corresponding to small cavities supposedly due to internal oxidation.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2008.12.004