Wind-driven rain on the facade of a monumental tower: Numerical simulation, full-scale validation and sensitivity analysis
Wind-driven rain (WDR) is one of the most important moisture sources that affect the hygrothermal performance and the durability of building facades. The facades of the Dutch monumental building St. Hubertus show severe deterioration caused by WDR. Assessment of the amount and intensity of WDR falli...
Gespeichert in:
Veröffentlicht in: | Building and environment 2009-08, Vol.44 (8), p.1675-1690 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wind-driven rain (WDR) is one of the most important moisture sources that affect the hygrothermal performance and the durability of building facades. The facades of the Dutch monumental building St. Hubertus show severe deterioration caused by WDR. Assessment of the amount and intensity of WDR falling onto the facades is necessary as input for numerical heat-air-moisture (HAM) transfer models to analyse the causes of the moisture problems and the impact of remedial measures. In this study, a numerical simulation method based on Computational Fluid Dynamics (CFD) is used to predict the amount of WDR impinging on the south-west facade of the tower of the building. The paper focuses on the numerical simulation results, the validation of these results and their sensitivity to two parameters: the level of geometrical detailing of the computational building model and the upstream terrain aerodynamic roughness length. Validation is performed by comparison of the numerical results with a dataset obtained from on-site WDR measurements. It is shown that the CFD simulations provide fairly good predictions of the amount of WDR impinging on the south-west facade of the tower, except for the lower part. It is also shown that the local effects of geometrical facade details are significant and can yield differences in WDR exposure up to 40%, while their effect at other positions is negligible. Finally, the sensitivity of WDR simulations to the upstream aerodynamic roughness length is discussed. |
---|---|
ISSN: | 0360-1323 1873-684X |
DOI: | 10.1016/j.buildenv.2008.11.003 |