The typical structure of graphs without given excluded subgraphs
Let $ {\cal L}$ be a finite family of graphs. We describe the typical structure of $ {\cal L}$‐free graphs, improving our earlier results (Balogh et al., J Combinat Theory Ser B 91 (2004), 1–24) on the Erdős–Frankl–Rödl theorem (Erdős et al., Graphs Combinat 2 (1986), 113–121), by proving our earlie...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2009-05, Vol.34 (3), p.305-318 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $ {\cal L}$ be a finite family of graphs. We describe the typical structure of $ {\cal L}$‐free graphs, improving our earlier results (Balogh et al., J Combinat Theory Ser B 91 (2004), 1–24) on the Erdős–Frankl–Rödl theorem (Erdős et al., Graphs Combinat 2 (1986), 113–121), by proving our earlier conjecture that, for $ p = p ({\cal L}) = {\rm min}_L \in {\cal L} \chi (L) - 1 $, the structure of almost all $ {\cal L}$‐free graphs is very similar to that of a random subgraph of the Turán graph Tn,p. The “similarity” is measured in terms of graph theoretical parameters of $ {\cal L}$.© 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2009 |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.20242 |