On the creep and phase stability of advanced Ni-base single crystal superalloys

The present article examines microstructure stability and creep resistance of a 5th generation superalloy, which has Cr content at 4.6 wt%, 6.4 wt% Re and 5.0 wt% Ru, in comparison with that of a 4th generation superalloy (3.2 wt% Cr, 5.8 wt% Re and 3.6 wt% Ru). The aim is to elucidate the implicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-08, Vol.490 (1), p.445-451
Hauptverfasser: Yeh, An-Chou, Sato, Akihiro, Kobayashi, Toshiharu, Harada, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 1
container_start_page 445
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 490
creator Yeh, An-Chou
Sato, Akihiro
Kobayashi, Toshiharu
Harada, Hiroshi
description The present article examines microstructure stability and creep resistance of a 5th generation superalloy, which has Cr content at 4.6 wt%, 6.4 wt% Re and 5.0 wt% Ru, in comparison with that of a 4th generation superalloy (3.2 wt% Cr, 5.8 wt% Re and 3.6 wt% Ru). The aim is to elucidate the implication of increasing Cr, Re and Ru contents for future alloy developments. Experimental results have concluded that high Re + Ru content could promote formation of hexagonal δ phase at 900 °C; additional Cr and Re could enhance the precipitation of TCP phase at 1100 °C. Although an increase in lattice misfit between γ and γ′ in the 5th generation superalloy could strengthen the alloy against creep deformation under conditions at high temperatures (≥1000 °C) and low stresses (≤245 MPa) whilst the microstructural stability remained, the tendency to raft should be avoided during creep at lower temperatures and higher stresses.
doi_str_mv 10.1016/j.msea.2008.02.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33912108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509308002153</els_id><sourcerecordid>33912108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-608d29c294fc55e39e94108f6d5a13337177b39121394245db01d68f40c769383</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzj5AreEtZ2XJS6o4iVV9AJny3E21JWbBDutlH9P0lYcOc1hv5nVDCG3DGIGLHvYxNuAOuYARQw8HuWMzFiRiyiRIjsnM5CcRSlIcUmuQtgAAEsgnZHVqqH9GqnxiB3VTUW7tQ5IQ69L62w_0LamutrrxmBFP2xUHq62-XaTaRg5R8OuQ6-da4dwTS5q7QLenHROvl6ePxdv0XL1-r54WkYm4XkfZVBUXBouk9qkKQqJMmFQ1FmVaiaEyFmel0IyzoRMeJJWJbAqK-oETJ5JUYg5uT_mdr792WHo1dYGg87pBttdUOJghgnkR9D4NgSPteq83Wo_KAZq2k5t1LSdmrZTwBUcTHendB2MdrUf69vw5-SQcpYzOXKPRw7HqnuLXgVjcZrKejS9qlr735tfy8GDHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33912108</pqid></control><display><type>article</type><title>On the creep and phase stability of advanced Ni-base single crystal superalloys</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yeh, An-Chou ; Sato, Akihiro ; Kobayashi, Toshiharu ; Harada, Hiroshi</creator><creatorcontrib>Yeh, An-Chou ; Sato, Akihiro ; Kobayashi, Toshiharu ; Harada, Hiroshi</creatorcontrib><description>The present article examines microstructure stability and creep resistance of a 5th generation superalloy, which has Cr content at 4.6 wt%, 6.4 wt% Re and 5.0 wt% Ru, in comparison with that of a 4th generation superalloy (3.2 wt% Cr, 5.8 wt% Re and 3.6 wt% Ru). The aim is to elucidate the implication of increasing Cr, Re and Ru contents for future alloy developments. Experimental results have concluded that high Re + Ru content could promote formation of hexagonal δ phase at 900 °C; additional Cr and Re could enhance the precipitation of TCP phase at 1100 °C. Although an increase in lattice misfit between γ and γ′ in the 5th generation superalloy could strengthen the alloy against creep deformation under conditions at high temperatures (≥1000 °C) and low stresses (≤245 MPa) whilst the microstructural stability remained, the tendency to raft should be avoided during creep at lower temperatures and higher stresses.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2008.02.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Creep ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Lattice misfit ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Phase instability ; Physics ; Precipitation ; Rafting ; Superalloys</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2008-08, Vol.490 (1), p.445-451</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-608d29c294fc55e39e94108f6d5a13337177b39121394245db01d68f40c769383</citedby><cites>FETCH-LOGICAL-c427t-608d29c294fc55e39e94108f6d5a13337177b39121394245db01d68f40c769383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2008.02.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20521719$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, An-Chou</creatorcontrib><creatorcontrib>Sato, Akihiro</creatorcontrib><creatorcontrib>Kobayashi, Toshiharu</creatorcontrib><creatorcontrib>Harada, Hiroshi</creatorcontrib><title>On the creep and phase stability of advanced Ni-base single crystal superalloys</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The present article examines microstructure stability and creep resistance of a 5th generation superalloy, which has Cr content at 4.6 wt%, 6.4 wt% Re and 5.0 wt% Ru, in comparison with that of a 4th generation superalloy (3.2 wt% Cr, 5.8 wt% Re and 3.6 wt% Ru). The aim is to elucidate the implication of increasing Cr, Re and Ru contents for future alloy developments. Experimental results have concluded that high Re + Ru content could promote formation of hexagonal δ phase at 900 °C; additional Cr and Re could enhance the precipitation of TCP phase at 1100 °C. Although an increase in lattice misfit between γ and γ′ in the 5th generation superalloy could strengthen the alloy against creep deformation under conditions at high temperatures (≥1000 °C) and low stresses (≤245 MPa) whilst the microstructural stability remained, the tendency to raft should be avoided during creep at lower temperatures and higher stresses.</description><subject>Applied sciences</subject><subject>Creep</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Lattice misfit</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Phase instability</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Rafting</subject><subject>Superalloys</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzj5AreEtZ2XJS6o4iVV9AJny3E21JWbBDutlH9P0lYcOc1hv5nVDCG3DGIGLHvYxNuAOuYARQw8HuWMzFiRiyiRIjsnM5CcRSlIcUmuQtgAAEsgnZHVqqH9GqnxiB3VTUW7tQ5IQ69L62w_0LamutrrxmBFP2xUHq62-XaTaRg5R8OuQ6-da4dwTS5q7QLenHROvl6ePxdv0XL1-r54WkYm4XkfZVBUXBouk9qkKQqJMmFQ1FmVaiaEyFmel0IyzoRMeJJWJbAqK-oETJ5JUYg5uT_mdr792WHo1dYGg87pBttdUOJghgnkR9D4NgSPteq83Wo_KAZq2k5t1LSdmrZTwBUcTHendB2MdrUf69vw5-SQcpYzOXKPRw7HqnuLXgVjcZrKejS9qlr735tfy8GDHA</recordid><startdate>20080825</startdate><enddate>20080825</enddate><creator>Yeh, An-Chou</creator><creator>Sato, Akihiro</creator><creator>Kobayashi, Toshiharu</creator><creator>Harada, Hiroshi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080825</creationdate><title>On the creep and phase stability of advanced Ni-base single crystal superalloys</title><author>Yeh, An-Chou ; Sato, Akihiro ; Kobayashi, Toshiharu ; Harada, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-608d29c294fc55e39e94108f6d5a13337177b39121394245db01d68f40c769383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Creep</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Lattice misfit</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Phase instability</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Rafting</topic><topic>Superalloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, An-Chou</creatorcontrib><creatorcontrib>Sato, Akihiro</creatorcontrib><creatorcontrib>Kobayashi, Toshiharu</creatorcontrib><creatorcontrib>Harada, Hiroshi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, An-Chou</au><au>Sato, Akihiro</au><au>Kobayashi, Toshiharu</au><au>Harada, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the creep and phase stability of advanced Ni-base single crystal superalloys</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2008-08-25</date><risdate>2008</risdate><volume>490</volume><issue>1</issue><spage>445</spage><epage>451</epage><pages>445-451</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The present article examines microstructure stability and creep resistance of a 5th generation superalloy, which has Cr content at 4.6 wt%, 6.4 wt% Re and 5.0 wt% Ru, in comparison with that of a 4th generation superalloy (3.2 wt% Cr, 5.8 wt% Re and 3.6 wt% Ru). The aim is to elucidate the implication of increasing Cr, Re and Ru contents for future alloy developments. Experimental results have concluded that high Re + Ru content could promote formation of hexagonal δ phase at 900 °C; additional Cr and Re could enhance the precipitation of TCP phase at 1100 °C. Although an increase in lattice misfit between γ and γ′ in the 5th generation superalloy could strengthen the alloy against creep deformation under conditions at high temperatures (≥1000 °C) and low stresses (≤245 MPa) whilst the microstructural stability remained, the tendency to raft should be avoided during creep at lower temperatures and higher stresses.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2008.02.008</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2008-08, Vol.490 (1), p.445-451
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_33912108
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Creep
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Lattice misfit
Materials science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Phase instability
Physics
Precipitation
Rafting
Superalloys
title On the creep and phase stability of advanced Ni-base single crystal superalloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20creep%20and%20phase%20stability%20of%20advanced%20Ni-base%20single%20crystal%20superalloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yeh,%20An-Chou&rft.date=2008-08-25&rft.volume=490&rft.issue=1&rft.spage=445&rft.epage=451&rft.pages=445-451&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2008.02.008&rft_dat=%3Cproquest_cross%3E33912108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33912108&rft_id=info:pmid/&rft_els_id=S0921509308002153&rfr_iscdi=true