On the creep and phase stability of advanced Ni-base single crystal superalloys

The present article examines microstructure stability and creep resistance of a 5th generation superalloy, which has Cr content at 4.6 wt%, 6.4 wt% Re and 5.0 wt% Ru, in comparison with that of a 4th generation superalloy (3.2 wt% Cr, 5.8 wt% Re and 3.6 wt% Ru). The aim is to elucidate the implicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-08, Vol.490 (1), p.445-451
Hauptverfasser: Yeh, An-Chou, Sato, Akihiro, Kobayashi, Toshiharu, Harada, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present article examines microstructure stability and creep resistance of a 5th generation superalloy, which has Cr content at 4.6 wt%, 6.4 wt% Re and 5.0 wt% Ru, in comparison with that of a 4th generation superalloy (3.2 wt% Cr, 5.8 wt% Re and 3.6 wt% Ru). The aim is to elucidate the implication of increasing Cr, Re and Ru contents for future alloy developments. Experimental results have concluded that high Re + Ru content could promote formation of hexagonal δ phase at 900 °C; additional Cr and Re could enhance the precipitation of TCP phase at 1100 °C. Although an increase in lattice misfit between γ and γ′ in the 5th generation superalloy could strengthen the alloy against creep deformation under conditions at high temperatures (≥1000 °C) and low stresses (≤245 MPa) whilst the microstructural stability remained, the tendency to raft should be avoided during creep at lower temperatures and higher stresses.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2008.02.008