Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution
This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy tria...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2009-07, Vol.33 (7), p.3151-3156 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3156 |
---|---|
container_issue | 7 |
container_start_page | 3151 |
container_title | Applied mathematical modelling |
container_volume | 33 |
creator | Hosseinzadeh Lotfi, F. Allahviranloo, T. Alimardani Jondabeh, M. Alizadeh, L. |
description | This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp. |
doi_str_mv | 10.1016/j.apm.2008.10.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33905653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X08002758</els_id><sourcerecordid>33905653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d7a7a8315f74b884a8768532aecb270695752c31b56b9fac4e49791628057c6c3</originalsourceid><addsrcrecordid>eNp9UD1PwzAQ9QASpfAD2LLAlmDHsZ2ICVV8SZUYAInNXByndeV8YCeo7a_HUStGljvd3Xvv7h5CVwQnBBN-u0mgb5IU4zzUCU7xCZphikVc4OzzDJ17v8EYs1DN0NdbZ39Mu4ogqkdrQ9jvd5E1rQYX9a5bOWiaaT76KVq9NWpq9utd1Ohh3VURtNWRBn1gbE0Dg458Z8fBdO0FOq3Ben15zHP08fjwvniOl69PL4v7ZawyLoa4EiAgp4TVIivzPINc8JzRFLQqU4F5wQRLFSUl42VRg8p0VoiC8DTHTCiu6BzdHHTDCd-j9oNsjFfaWmh1N3pJaYEZZzQAyQGoXOe907XsXTjZ7STBcvJPbmTwT07-Ta3gX-BcH8XBK7C1g1YZ_0dMCc2ynBcBd3fA6fDpj9FOemV0q3RlnFaDrDrzz5ZfKZGI4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33905653</pqid></control><display><type>article</type><title>Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution</title><source>EZB Free E-Journals</source><source>Elsevier ScienceDirect Journals Collection</source><creator>Hosseinzadeh Lotfi, F. ; Allahviranloo, T. ; Alimardani Jondabeh, M. ; Alizadeh, L.</creator><creatorcontrib>Hosseinzadeh Lotfi, F. ; Allahviranloo, T. ; Alimardani Jondabeh, M. ; Alizadeh, L.</creatorcontrib><description>This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2008.10.020</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Applied sciences ; Exact sciences and technology ; Fuzzy numbers ; Linear programming ; Mathematical programming ; Multi objective linear programming (MOLP) ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Applied mathematical modelling, 2009-07, Vol.33 (7), p.3151-3156</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d7a7a8315f74b884a8768532aecb270695752c31b56b9fac4e49791628057c6c3</citedby><cites>FETCH-LOGICAL-c467t-d7a7a8315f74b884a8768532aecb270695752c31b56b9fac4e49791628057c6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X08002758$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21344869$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosseinzadeh Lotfi, F.</creatorcontrib><creatorcontrib>Allahviranloo, T.</creatorcontrib><creatorcontrib>Alimardani Jondabeh, M.</creatorcontrib><creatorcontrib>Alizadeh, L.</creatorcontrib><title>Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution</title><title>Applied mathematical modelling</title><description>This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fuzzy numbers</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Multi objective linear programming (MOLP)</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAQ9QASpfAD2LLAlmDHsZ2ICVV8SZUYAInNXByndeV8YCeo7a_HUStGljvd3Xvv7h5CVwQnBBN-u0mgb5IU4zzUCU7xCZphikVc4OzzDJ17v8EYs1DN0NdbZ39Mu4ogqkdrQ9jvd5E1rQYX9a5bOWiaaT76KVq9NWpq9utd1Ohh3VURtNWRBn1gbE0Dg458Z8fBdO0FOq3Ben15zHP08fjwvniOl69PL4v7ZawyLoa4EiAgp4TVIivzPINc8JzRFLQqU4F5wQRLFSUl42VRg8p0VoiC8DTHTCiu6BzdHHTDCd-j9oNsjFfaWmh1N3pJaYEZZzQAyQGoXOe907XsXTjZ7STBcvJPbmTwT07-Ta3gX-BcH8XBK7C1g1YZ_0dMCc2ynBcBd3fA6fDpj9FOemV0q3RlnFaDrDrzz5ZfKZGI4g</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Hosseinzadeh Lotfi, F.</creator><creator>Allahviranloo, T.</creator><creator>Alimardani Jondabeh, M.</creator><creator>Alizadeh, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution</title><author>Hosseinzadeh Lotfi, F. ; Allahviranloo, T. ; Alimardani Jondabeh, M. ; Alizadeh, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d7a7a8315f74b884a8768532aecb270695752c31b56b9fac4e49791628057c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fuzzy numbers</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Multi objective linear programming (MOLP)</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseinzadeh Lotfi, F.</creatorcontrib><creatorcontrib>Allahviranloo, T.</creatorcontrib><creatorcontrib>Alimardani Jondabeh, M.</creatorcontrib><creatorcontrib>Alizadeh, L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinzadeh Lotfi, F.</au><au>Allahviranloo, T.</au><au>Alimardani Jondabeh, M.</au><au>Alizadeh, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution</atitle><jtitle>Applied mathematical modelling</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>33</volume><issue>7</issue><spage>3151</spage><epage>3156</epage><pages>3151-3156</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2008.10.020</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 2009-07, Vol.33 (7), p.3151-3156 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_33905653 |
source | EZB Free E-Journals; Elsevier ScienceDirect Journals Collection |
subjects | Applied sciences Exact sciences and technology Fuzzy numbers Linear programming Mathematical programming Multi objective linear programming (MOLP) Operational research and scientific management Operational research. Management science |
title | Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20a%20full%20fuzzy%20linear%20programming%20using%20lexicography%20method%20and%20fuzzy%20approximate%20solution&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Hosseinzadeh%20Lotfi,%20F.&rft.date=2009-07-01&rft.volume=33&rft.issue=7&rft.spage=3151&rft.epage=3156&rft.pages=3151-3156&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2008.10.020&rft_dat=%3Cproquest_cross%3E33905653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33905653&rft_id=info:pmid/&rft_els_id=S0307904X08002758&rfr_iscdi=true |