Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution

This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy tria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2009-07, Vol.33 (7), p.3151-3156
Hauptverfasser: Hosseinzadeh Lotfi, F., Allahviranloo, T., Alimardani Jondabeh, M., Alizadeh, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3156
container_issue 7
container_start_page 3151
container_title Applied mathematical modelling
container_volume 33
creator Hosseinzadeh Lotfi, F.
Allahviranloo, T.
Alimardani Jondabeh, M.
Alizadeh, L.
description This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.
doi_str_mv 10.1016/j.apm.2008.10.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33905653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X08002758</els_id><sourcerecordid>33905653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d7a7a8315f74b884a8768532aecb270695752c31b56b9fac4e49791628057c6c3</originalsourceid><addsrcrecordid>eNp9UD1PwzAQ9QASpfAD2LLAlmDHsZ2ICVV8SZUYAInNXByndeV8YCeo7a_HUStGljvd3Xvv7h5CVwQnBBN-u0mgb5IU4zzUCU7xCZphikVc4OzzDJ17v8EYs1DN0NdbZ39Mu4ogqkdrQ9jvd5E1rQYX9a5bOWiaaT76KVq9NWpq9utd1Ohh3VURtNWRBn1gbE0Dg458Z8fBdO0FOq3Ben15zHP08fjwvniOl69PL4v7ZawyLoa4EiAgp4TVIivzPINc8JzRFLQqU4F5wQRLFSUl42VRg8p0VoiC8DTHTCiu6BzdHHTDCd-j9oNsjFfaWmh1N3pJaYEZZzQAyQGoXOe907XsXTjZ7STBcvJPbmTwT07-Ta3gX-BcH8XBK7C1g1YZ_0dMCc2ynBcBd3fA6fDpj9FOemV0q3RlnFaDrDrzz5ZfKZGI4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33905653</pqid></control><display><type>article</type><title>Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution</title><source>EZB Free E-Journals</source><source>Elsevier ScienceDirect Journals Collection</source><creator>Hosseinzadeh Lotfi, F. ; Allahviranloo, T. ; Alimardani Jondabeh, M. ; Alizadeh, L.</creator><creatorcontrib>Hosseinzadeh Lotfi, F. ; Allahviranloo, T. ; Alimardani Jondabeh, M. ; Alizadeh, L.</creatorcontrib><description>This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2008.10.020</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Applied sciences ; Exact sciences and technology ; Fuzzy numbers ; Linear programming ; Mathematical programming ; Multi objective linear programming (MOLP) ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Applied mathematical modelling, 2009-07, Vol.33 (7), p.3151-3156</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d7a7a8315f74b884a8768532aecb270695752c31b56b9fac4e49791628057c6c3</citedby><cites>FETCH-LOGICAL-c467t-d7a7a8315f74b884a8768532aecb270695752c31b56b9fac4e49791628057c6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X08002758$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21344869$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosseinzadeh Lotfi, F.</creatorcontrib><creatorcontrib>Allahviranloo, T.</creatorcontrib><creatorcontrib>Alimardani Jondabeh, M.</creatorcontrib><creatorcontrib>Alizadeh, L.</creatorcontrib><title>Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution</title><title>Applied mathematical modelling</title><description>This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fuzzy numbers</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Multi objective linear programming (MOLP)</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAQ9QASpfAD2LLAlmDHsZ2ICVV8SZUYAInNXByndeV8YCeo7a_HUStGljvd3Xvv7h5CVwQnBBN-u0mgb5IU4zzUCU7xCZphikVc4OzzDJ17v8EYs1DN0NdbZ39Mu4ogqkdrQ9jvd5E1rQYX9a5bOWiaaT76KVq9NWpq9utd1Ohh3VURtNWRBn1gbE0Dg458Z8fBdO0FOq3Ben15zHP08fjwvniOl69PL4v7ZawyLoa4EiAgp4TVIivzPINc8JzRFLQqU4F5wQRLFSUl42VRg8p0VoiC8DTHTCiu6BzdHHTDCd-j9oNsjFfaWmh1N3pJaYEZZzQAyQGoXOe907XsXTjZ7STBcvJPbmTwT07-Ta3gX-BcH8XBK7C1g1YZ_0dMCc2ynBcBd3fA6fDpj9FOemV0q3RlnFaDrDrzz5ZfKZGI4g</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Hosseinzadeh Lotfi, F.</creator><creator>Allahviranloo, T.</creator><creator>Alimardani Jondabeh, M.</creator><creator>Alizadeh, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution</title><author>Hosseinzadeh Lotfi, F. ; Allahviranloo, T. ; Alimardani Jondabeh, M. ; Alizadeh, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d7a7a8315f74b884a8768532aecb270695752c31b56b9fac4e49791628057c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fuzzy numbers</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Multi objective linear programming (MOLP)</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseinzadeh Lotfi, F.</creatorcontrib><creatorcontrib>Allahviranloo, T.</creatorcontrib><creatorcontrib>Alimardani Jondabeh, M.</creatorcontrib><creatorcontrib>Alizadeh, L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinzadeh Lotfi, F.</au><au>Allahviranloo, T.</au><au>Alimardani Jondabeh, M.</au><au>Alizadeh, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution</atitle><jtitle>Applied mathematical modelling</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>33</volume><issue>7</issue><spage>3151</spage><epage>3156</epage><pages>3151-3156</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2008.10.020</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2009-07, Vol.33 (7), p.3151-3156
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_33905653
source EZB Free E-Journals; Elsevier ScienceDirect Journals Collection
subjects Applied sciences
Exact sciences and technology
Fuzzy numbers
Linear programming
Mathematical programming
Multi objective linear programming (MOLP)
Operational research and scientific management
Operational research. Management science
title Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20a%20full%20fuzzy%20linear%20programming%20using%20lexicography%20method%20and%20fuzzy%20approximate%20solution&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Hosseinzadeh%20Lotfi,%20F.&rft.date=2009-07-01&rft.volume=33&rft.issue=7&rft.spage=3151&rft.epage=3156&rft.pages=3151-3156&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2008.10.020&rft_dat=%3Cproquest_cross%3E33905653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33905653&rft_id=info:pmid/&rft_els_id=S0307904X08002758&rfr_iscdi=true