Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution

This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy tria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2009-07, Vol.33 (7), p.3151-3156
Hauptverfasser: Hosseinzadeh Lotfi, F., Allahviranloo, T., Alimardani Jondabeh, M., Alizadeh, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses full fuzzy linear programming (FFLP) problems of which all parameters and variable are triangular fuzzy numbers. We use the concept of the symmetric triangular fuzzy number and introduce an approach to defuzzify a general fuzzy quantity. For such a problem, first, the fuzzy triangular number is approximated to its nearest symmetric triangular number, with the assumption that all decision variables are symmetric triangular. An optimal solution to the above-mentioned problem is a symmetric fuzzy solution. Every FLP models turned into two crisp complex linear problems; first a problem is designed in which the center objective value will be calculated and since the center of a fuzzy number is preferred to (its) margin. With a special ranking on fuzzy numbers, the FFLP transform to multi objective linear programming (MOLP) where all variables and parameters are crisp.
ISSN:0307-904X
DOI:10.1016/j.apm.2008.10.020