Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends
Poly(lactic acid) (PLA) and starch copolymers are obtained by reactive blending - varying the starch compositions from 0 to 60%. PLA is functionalized with maleic anhydride (MA), obtaining PLA-g-MA copolymers using dicumyl peroxide as an initiator of grafting in order to improve the compatibility an...
Gespeichert in:
Veröffentlicht in: | Macromolecular symposia 2009-02, Vol.277 (1), p.69-80 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(lactic acid) (PLA) and starch copolymers are obtained by reactive blending - varying the starch compositions from 0 to 60%. PLA is functionalized with maleic anhydride (MA), obtaining PLA-g-MA copolymers using dicumyl peroxide as an initiator of grafting in order to improve the compatibility and interfacial adhesion between the constituents. PLA + starch blends without a compatibilizer do not have sufficient interfacial adhesion. Decomposition temperature of PLA is not affected by grafting. Glass transition temperatures and dynamic mechanical properties are affected since MA has a plasticizing effect. Along with an increasing starch content friction decreases while wear loss volume in pin-on-disk tribometry has a minimum at nominal 15% wt. starch but increases at higher starch concentrations. The residual depth in scratching and sliding wear testing has a maximum at 15% starch; there is a minimum of storage modulus E' determined in dynamic mechanical testing at the same concentration. Microhardness results also reflect the plasticization by MA. |
---|---|
ISSN: | 1022-1360 1521-3900 |
DOI: | 10.1002/masy.200950309 |