Comparative study of differently treated animal bones for Co(2+) removal

The objective of the present study was the evaluation of differently treated bovine bones for Co(2+) removal from aqueous media. Powdered bones (B), as well as samples prepared by H(2)O(2) oxidation (BH(2)O(2)) and annealing at 400-1000 degrees C (B400-B1000), were tested as sorbent materials. A com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2009-05, Vol.164 (1), p.279-287
Hauptverfasser: Dimović, S, Smiciklas, I, Plećas, I, Antonović, D, Mitrić, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the present study was the evaluation of differently treated bovine bones for Co(2+) removal from aqueous media. Powdered bones (B), as well as samples prepared by H(2)O(2) oxidation (BH(2)O(2)) and annealing at 400-1000 degrees C (B400-B1000), were tested as sorbent materials. A combination of XRD, FTIR spectroscopies, DTA/TGA analyses, specific surface area (S(p)) and point of zero charge (pH(PZC)) measurements was utilized for physicochemical characterization of sorbents. Sorption of Co(2+) was studied in batch conditions as a function of pH, contact time and Co(2+) concentration. Initial pH values in the range 4-8 were found optimal for sorption experiments. Equilibrium time of 24h was required in all investigated systems. The maximum sorption capacities differ significantly from 0.078 to 0.495mmol/g, whereas the affinity towards Co(2+) decreased in the order: B400>BH(2)O(2)>B600>B>B800>B1000. The pseudo-second-order model and Langmuir theoretical equation were used for fitting the kinetic and equilibrium data, respectively. Ion-exchange with Ca(2+) and specific cation sorption were identified as main removal mechanisms. The amounts of Co(2+) desorbed from loaded bone sorbents increased with the decrease of pH as well as with the increase of Ca(2+) concentration. Heating at 400 degrees C was found to be an optimal treatment for the production of the Co(2+) removal agent.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2008.08.013