Viscoplastic fluid displacements in horizontal narrow eccentric annuli: stratification and travelling wave solutions
We consider laminar displacement flows in narrow eccentric annuli, oriented horizontally, between two fluids of Herschel–Bulkley type, (i.e. including Newtonian, power-law and Bingham models). This situation is modelled via a Hele-Shaw approach. Whereas slumping and stratification would be expected...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2008-06, Vol.605, p.293-327 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | |
container_start_page | 293 |
container_title | Journal of fluid mechanics |
container_volume | 605 |
creator | CARRASCO-TEJA, M. FRIGAARD, I. A. SEYMOUR, B. R. STOREY, S. |
description | We consider laminar displacement flows in narrow eccentric annuli, oriented horizontally, between two fluids of Herschel–Bulkley type, (i.e. including Newtonian, power-law and Bingham models). This situation is modelled via a Hele-Shaw approach. Whereas slumping and stratification would be expected in the absence of any imposed flow rate, for a displacement flow we show that there are often steady-state travelling wave solutions in this displacement. These may exist even at large eccentricities and for large density differences between the fluids. When heavy fluids displace light fluids, annular eccentricity opposes buoyancy and steady states are more prevalent than when light fluids displace heavy fluids. For large ratios of buoyancy forces to viscous forces we derive a lubrication-style displacement model. This simplification allows us to find necessary and sufficient conditions under which a displacement can be steady, which can be expressed conveniently in terms of a consistency ratio. It is interesting that buoyancy does not appear in the critical conditions for a horizontal well. Instead a competition between fluid rheologies and eccentricity is the determining factor. Buoyancy acts only to determine the axial length of the steady-state profile. |
doi_str_mv | 10.1017/S0022112008001535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33599328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112008001535</cupid><sourcerecordid>19400109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-c0c2df740a48788313449b8d8524e9a9f7bc0f0153d3f913f4c5ab77ebde525b3</originalsourceid><addsrcrecordid>eNqFkV1vFCEUhidGE9fqD_COmOjdKJ8DeGdaXU3aqGn9uCMMA5XKwgqMtf76MtlNTWqMN0De9zkn7-F03WMEnyOI-ItTCDFGCEMoIESMsDvdCtFB9nyg7G63Wux-8e93D0q5aAyBkq-6-tkXk7ZBl-oNcGH2E5h8aYKxGxtrAT6Cbyn73ylWHUDUOadLYI1pZm4lOsY5-Jeg1Kyrd960M8UmT6ApP20IPp6Dy_YCJYV5McvD7p7TodhH-_ug-_Tm9dnh2_74_frd4avj3lBJa2-gwZPjFGoquBAEEUrlKCbBMLVSS8dHA90y7UScRMRRw_TIuR0nyzAbyUH3bNd3m9OP2ZaqNm3aFklHm-aiCGFSEiz-CyJJ249B2cAnt8CLNOfYhlAYQSEQo6hBaAeZnErJ1qlt9hudrxSCatmW-mtbrebpvrEuRgeXdTS-3BRiSKREA25cv-N8qfbXja_zdzVwwpka1h_V-uuXk9OzD0dq4ck-i96M2U_n9k_if6e5BrDjtHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210881541</pqid></control><display><type>article</type><title>Viscoplastic fluid displacements in horizontal narrow eccentric annuli: stratification and travelling wave solutions</title><source>Cambridge Journals</source><creator>CARRASCO-TEJA, M. ; FRIGAARD, I. A. ; SEYMOUR, B. R. ; STOREY, S.</creator><creatorcontrib>CARRASCO-TEJA, M. ; FRIGAARD, I. A. ; SEYMOUR, B. R. ; STOREY, S.</creatorcontrib><description>We consider laminar displacement flows in narrow eccentric annuli, oriented horizontally, between two fluids of Herschel–Bulkley type, (i.e. including Newtonian, power-law and Bingham models). This situation is modelled via a Hele-Shaw approach. Whereas slumping and stratification would be expected in the absence of any imposed flow rate, for a displacement flow we show that there are often steady-state travelling wave solutions in this displacement. These may exist even at large eccentricities and for large density differences between the fluids. When heavy fluids displace light fluids, annular eccentricity opposes buoyancy and steady states are more prevalent than when light fluids displace heavy fluids. For large ratios of buoyancy forces to viscous forces we derive a lubrication-style displacement model. This simplification allows us to find necessary and sufficient conditions under which a displacement can be steady, which can be expressed conveniently in terms of a consistency ratio. It is interesting that buoyancy does not appear in the critical conditions for a horizontal well. Instead a competition between fluid rheologies and eccentricity is the determining factor. Buoyancy acts only to determine the axial length of the steady-state profile.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112008001535</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied sciences ; Boundary layer ; Buoyancy ; Completion equipments and methods. Casing. Cementing. Tests and measurements in wells ; Crude oil, natural gas and petroleum products ; Drilling. Casing. Preparing wells for production ; Energy ; Exact sciences and technology ; Flow rates ; Flow velocity ; Fluid dynamics ; Fluid mechanics ; Fuels ; Fundamental areas of phenomenology (including applications) ; Non-newtonian fluid flows ; Physics ; Prospecting and production of crude oil, natural gas, oil shales and tar sands ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2008-06, Vol.605, p.293-327</ispartof><rights>Copyright © Cambridge University Press 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-c0c2df740a48788313449b8d8524e9a9f7bc0f0153d3f913f4c5ab77ebde525b3</citedby><cites>FETCH-LOGICAL-c494t-c0c2df740a48788313449b8d8524e9a9f7bc0f0153d3f913f4c5ab77ebde525b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112008001535/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20399162$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CARRASCO-TEJA, M.</creatorcontrib><creatorcontrib>FRIGAARD, I. A.</creatorcontrib><creatorcontrib>SEYMOUR, B. R.</creatorcontrib><creatorcontrib>STOREY, S.</creatorcontrib><title>Viscoplastic fluid displacements in horizontal narrow eccentric annuli: stratification and travelling wave solutions</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We consider laminar displacement flows in narrow eccentric annuli, oriented horizontally, between two fluids of Herschel–Bulkley type, (i.e. including Newtonian, power-law and Bingham models). This situation is modelled via a Hele-Shaw approach. Whereas slumping and stratification would be expected in the absence of any imposed flow rate, for a displacement flow we show that there are often steady-state travelling wave solutions in this displacement. These may exist even at large eccentricities and for large density differences between the fluids. When heavy fluids displace light fluids, annular eccentricity opposes buoyancy and steady states are more prevalent than when light fluids displace heavy fluids. For large ratios of buoyancy forces to viscous forces we derive a lubrication-style displacement model. This simplification allows us to find necessary and sufficient conditions under which a displacement can be steady, which can be expressed conveniently in terms of a consistency ratio. It is interesting that buoyancy does not appear in the critical conditions for a horizontal well. Instead a competition between fluid rheologies and eccentricity is the determining factor. Buoyancy acts only to determine the axial length of the steady-state profile.</description><subject>Applied sciences</subject><subject>Boundary layer</subject><subject>Buoyancy</subject><subject>Completion equipments and methods. Casing. Cementing. Tests and measurements in wells</subject><subject>Crude oil, natural gas and petroleum products</subject><subject>Drilling. Casing. Preparing wells for production</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fuels</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Non-newtonian fluid flows</subject><subject>Physics</subject><subject>Prospecting and production of crude oil, natural gas, oil shales and tar sands</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1vFCEUhidGE9fqD_COmOjdKJ8DeGdaXU3aqGn9uCMMA5XKwgqMtf76MtlNTWqMN0De9zkn7-F03WMEnyOI-ItTCDFGCEMoIESMsDvdCtFB9nyg7G63Wux-8e93D0q5aAyBkq-6-tkXk7ZBl-oNcGH2E5h8aYKxGxtrAT6Cbyn73ylWHUDUOadLYI1pZm4lOsY5-Jeg1Kyrd960M8UmT6ApP20IPp6Dy_YCJYV5McvD7p7TodhH-_ug-_Tm9dnh2_74_frd4avj3lBJa2-gwZPjFGoquBAEEUrlKCbBMLVSS8dHA90y7UScRMRRw_TIuR0nyzAbyUH3bNd3m9OP2ZaqNm3aFklHm-aiCGFSEiz-CyJJ249B2cAnt8CLNOfYhlAYQSEQo6hBaAeZnErJ1qlt9hudrxSCatmW-mtbrebpvrEuRgeXdTS-3BRiSKREA25cv-N8qfbXja_zdzVwwpka1h_V-uuXk9OzD0dq4ck-i96M2U_n9k_if6e5BrDjtHw</recordid><startdate>20080625</startdate><enddate>20080625</enddate><creator>CARRASCO-TEJA, M.</creator><creator>FRIGAARD, I. A.</creator><creator>SEYMOUR, B. R.</creator><creator>STOREY, S.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20080625</creationdate><title>Viscoplastic fluid displacements in horizontal narrow eccentric annuli: stratification and travelling wave solutions</title><author>CARRASCO-TEJA, M. ; FRIGAARD, I. A. ; SEYMOUR, B. R. ; STOREY, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-c0c2df740a48788313449b8d8524e9a9f7bc0f0153d3f913f4c5ab77ebde525b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Boundary layer</topic><topic>Buoyancy</topic><topic>Completion equipments and methods. Casing. Cementing. Tests and measurements in wells</topic><topic>Crude oil, natural gas and petroleum products</topic><topic>Drilling. Casing. Preparing wells for production</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fuels</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Non-newtonian fluid flows</topic><topic>Physics</topic><topic>Prospecting and production of crude oil, natural gas, oil shales and tar sands</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CARRASCO-TEJA, M.</creatorcontrib><creatorcontrib>FRIGAARD, I. A.</creatorcontrib><creatorcontrib>SEYMOUR, B. R.</creatorcontrib><creatorcontrib>STOREY, S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CARRASCO-TEJA, M.</au><au>FRIGAARD, I. A.</au><au>SEYMOUR, B. R.</au><au>STOREY, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoplastic fluid displacements in horizontal narrow eccentric annuli: stratification and travelling wave solutions</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2008-06-25</date><risdate>2008</risdate><volume>605</volume><spage>293</spage><epage>327</epage><pages>293-327</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We consider laminar displacement flows in narrow eccentric annuli, oriented horizontally, between two fluids of Herschel–Bulkley type, (i.e. including Newtonian, power-law and Bingham models). This situation is modelled via a Hele-Shaw approach. Whereas slumping and stratification would be expected in the absence of any imposed flow rate, for a displacement flow we show that there are often steady-state travelling wave solutions in this displacement. These may exist even at large eccentricities and for large density differences between the fluids. When heavy fluids displace light fluids, annular eccentricity opposes buoyancy and steady states are more prevalent than when light fluids displace heavy fluids. For large ratios of buoyancy forces to viscous forces we derive a lubrication-style displacement model. This simplification allows us to find necessary and sufficient conditions under which a displacement can be steady, which can be expressed conveniently in terms of a consistency ratio. It is interesting that buoyancy does not appear in the critical conditions for a horizontal well. Instead a competition between fluid rheologies and eccentricity is the determining factor. Buoyancy acts only to determine the axial length of the steady-state profile.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112008001535</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2008-06, Vol.605, p.293-327 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_33599328 |
source | Cambridge Journals |
subjects | Applied sciences Boundary layer Buoyancy Completion equipments and methods. Casing. Cementing. Tests and measurements in wells Crude oil, natural gas and petroleum products Drilling. Casing. Preparing wells for production Energy Exact sciences and technology Flow rates Flow velocity Fluid dynamics Fluid mechanics Fuels Fundamental areas of phenomenology (including applications) Non-newtonian fluid flows Physics Prospecting and production of crude oil, natural gas, oil shales and tar sands Viscosity |
title | Viscoplastic fluid displacements in horizontal narrow eccentric annuli: stratification and travelling wave solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoplastic%20fluid%20displacements%20in%20horizontal%20narrow%20eccentric%20annuli:%20stratification%20and%20travelling%20wave%20solutions&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=CARRASCO-TEJA,%20M.&rft.date=2008-06-25&rft.volume=605&rft.spage=293&rft.epage=327&rft.pages=293-327&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112008001535&rft_dat=%3Cproquest_cross%3E19400109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210881541&rft_id=info:pmid/&rft_cupid=10_1017_S0022112008001535&rfr_iscdi=true |