Viscoplastic fluid displacements in horizontal narrow eccentric annuli: stratification and travelling wave solutions
We consider laminar displacement flows in narrow eccentric annuli, oriented horizontally, between two fluids of Herschel–Bulkley type, (i.e. including Newtonian, power-law and Bingham models). This situation is modelled via a Hele-Shaw approach. Whereas slumping and stratification would be expected...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2008-06, Vol.605, p.293-327 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider laminar displacement flows in narrow eccentric annuli, oriented horizontally, between two fluids of Herschel–Bulkley type, (i.e. including Newtonian, power-law and Bingham models). This situation is modelled via a Hele-Shaw approach. Whereas slumping and stratification would be expected in the absence of any imposed flow rate, for a displacement flow we show that there are often steady-state travelling wave solutions in this displacement. These may exist even at large eccentricities and for large density differences between the fluids. When heavy fluids displace light fluids, annular eccentricity opposes buoyancy and steady states are more prevalent than when light fluids displace heavy fluids. For large ratios of buoyancy forces to viscous forces we derive a lubrication-style displacement model. This simplification allows us to find necessary and sufficient conditions under which a displacement can be steady, which can be expressed conveniently in terms of a consistency ratio. It is interesting that buoyancy does not appear in the critical conditions for a horizontal well. Instead a competition between fluid rheologies and eccentricity is the determining factor. Buoyancy acts only to determine the axial length of the steady-state profile. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112008001535 |