The absorption-peak map of Mare Serenitatis obtained by a hyper-spectral telescope

The Mg-number [Mg#=atomic Mg/(Mg+Fe)] serves as an important petrologic discriminator when analyzing and understanding lunar rocks. Variations in the Mg# shift the wavelength of the absorption spectra of ferrous iron, which peak at around 1000 nm. Based on the image cubes of the Moon obtained by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth, planets and space planets and space, 2008-01, Vol.60 (4), p.425-431
Hauptverfasser: Okuno, Hideaki, Yamanoi, Yuta, Saiki, Kazuto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Mg-number [Mg#=atomic Mg/(Mg+Fe)] serves as an important petrologic discriminator when analyzing and understanding lunar rocks. Variations in the Mg# shift the wavelength of the absorption spectra of ferrous iron, which peak at around 1000 nm. Based on the image cubes of the Moon obtained by the Advanced Lunar Imaging Spectrometer (ALIS), we detected the shift in the absorption spectra of ferrous iron and built up an absorption-peak map of Mare Serenitatis. The wavelength of the absorption peak shows an 11-nm shift in Mare Serenitatis. Since the degree of space weathering can be considered to be almost the same as that within the same lava unit and Ca content cannot change without changing Mg# during magma differentiation, these shifts of the peak absorption spectra suggest that there is Mg# variation in at least the same lava unit.
ISSN:1343-8832
1880-5981
1880-5981
DOI:10.1186/BF03352807