Some two color, four variable Rado numbers
There exists a minimum integer N such that any 2-coloring of { 1 , 2 , … , N } admits a monochromatic solution to x + y + k z = ℓ w for k , ℓ ∈ Z + , where N depends on k and ℓ. We determine N when ℓ − k ∈ { 0 , 1 , 2 , 3 , 4 , 5 } , for all k , ℓ for which 1 2 ( ( ℓ − k ) 2 − 2 ) ( ℓ − k + 1 ) ⩽ k...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 2008-08, Vol.41 (2), p.214-226 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There exists a minimum integer
N such that any 2-coloring of
{
1
,
2
,
…
,
N
}
admits a monochromatic solution to
x
+
y
+
k
z
=
ℓ
w
for
k
,
ℓ
∈
Z
+
, where
N depends on
k and
ℓ. We determine
N when
ℓ
−
k
∈
{
0
,
1
,
2
,
3
,
4
,
5
}
, for all
k
,
ℓ
for which
1
2
(
(
ℓ
−
k
)
2
−
2
)
(
ℓ
−
k
+
1
)
⩽
k
⩽
ℓ
−
4
, as well as for arbitrary
k when
ℓ
=
2
. |
---|---|
ISSN: | 0196-8858 1090-2074 |
DOI: | 10.1016/j.aam.2007.06.002 |