U( n) Wigner coefficients, the path sum formula, and invariant G-functions
We prove the path sum formula for computing the U( n) invariant denominator functions associated to stretched U( n) Wigner operators. A family of U( n) invariant polynomials G [ λ] ( n) is then defined which generalize the μ G q ( n) polynomials previously studied. The G [ λ] ( n) polynomials are sh...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 1985-01, Vol.6 (3), p.291-349 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the path sum formula for computing the
U(
n) invariant denominator functions associated to stretched
U(
n) Wigner operators. A family of
U(
n) invariant polynomials
G
[
λ]
(
n)
is then defined which generalize the
μ
G
q
(
n)
polynomials previously studied. The
G
[
λ]
(
n)
polynomials are shown to satisfy a number of difference equations and have symmetry properties similar to the
μ
G
q
(
n)
polynomials. We also give a direct proof of the important transposition symmetry for the
G
[
λ]
(
n)
polynomials. To enable the non-specialist to understand the foundations for these remarkable polynomials, we provide an exposition of the boson calculus and the construction of the multiplicity-free
U(
n) Wigner operators. |
---|---|
ISSN: | 0196-8858 1090-2074 |
DOI: | 10.1016/0196-8858(85)90015-6 |