On the areas of cyclic and semicyclic polygons

We investigate the “generalized Heron polynomial” that relates the squared area of an n-gon inscribed in a circle to the squares of its side lengths. For a ( 2 m + 1 ) -gon or ( 2 m + 2 ) -gon, we express it as the defining polynomial of a certain variety derived from the variety of binary ( 2 m − 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2005-05, Vol.34 (4), p.669-689
Hauptverfasser: Miller Maley, F., Robbins, David P., Roskies, Julie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the “generalized Heron polynomial” that relates the squared area of an n-gon inscribed in a circle to the squares of its side lengths. For a ( 2 m + 1 ) -gon or ( 2 m + 2 ) -gon, we express it as the defining polynomial of a certain variety derived from the variety of binary ( 2 m − 1 ) -forms having m − 1 double roots. Thus we obtain explicit formulas for the areas of cyclic heptagons and octagons, and illuminate some mysterious features of Robbins' formulas for the areas of cyclic pentagons and hexagons. We also introduce a companion family of polynomials that relate the squared area of an n-gon inscribed in a circle, one of whose sides is a diameter, to the squared lengths of the other sides. By similar algebraic techniques we obtain explicit formulas for these polynomials for all n ⩽ 7 .
ISSN:0196-8858
1090-2074
DOI:10.1016/j.aam.2004.09.008