Mechanical Properties of Cold Bend Pipes

Cold bends are frequently required in energy pipelines in order to change the vertical and horizontal orientations of the pipeline route. They are produced by plastically bending a pipe joint in a cold bending machine by creating a series of uniformly spaced incremental bends. This procedure acts to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pressure vessel technology 2008-05, Vol.130 (2), p.021708 (6)-021708 (6)
Hauptverfasser: Sen, M., Cheng, J. J. R., Murray, D. W., Zhou, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cold bends are frequently required in energy pipelines in order to change the vertical and horizontal orientations of the pipeline route. They are produced by plastically bending a pipe joint in a cold bending machine by creating a series of uniformly spaced incremental bends. This procedure acts to reduce the moment capacity and buckling strain of the pipe, and studying the changes in pipe properties caused by cold bending is valuable in assessing the level of this strength reduction. Accordingly, the initial imperfections and material transformations of five full-scale cold bend pipes were assessed in this research program. The imperfections were measured at several locations around the circumference of the specimens, along the entire bend length. It was determined that the distribution of imperfections was similar in shape to a sine function, and their amplitude ranged from 0.3mmto1.0mm. Tension coupon tests were conducted on the intrados, extrados, and virgin materials of the specimens. It was revealed that the extrados material exhibited an increase in yield strength due to work hardening and that the intrados material demonstrated a reduction in yield strength due to the Bauschinger effect. It was established that the imperfections, and material transformations in the specimens were predominantly unaffected by the incremental-bend magnitude or spacing that was employed during the cold bending procedure.
ISSN:0094-9930
1528-8978
DOI:10.1115/1.2892034