Advanced Data Clustering Methods of Mining Web Documents

The aim of this paper is to evaluate, propose and improve the use of advanced web data clustering techniques, allowing data analysts to conduct more efficient execution of large-scale web data searches. Increasing the efficiency of this search process requires a detailed knowledge of abstract catego...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Issues in informing science & information technology education 2006-01, Vol.3, p.563-579
Hauptverfasser: Sambasivam, Samuel, Theodosopoulos, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to evaluate, propose and improve the use of advanced web data clustering techniques, allowing data analysts to conduct more efficient execution of large-scale web data searches. Increasing the efficiency of this search process requires a detailed knowledge of abstract categories, pattern matching techniques, and their relationship to search engine speed. In this paper we compare several alternative advanced techniques of data clustering in creation of abstract categories for these algorithms. These algorithms will be submitted to a side-by-side speed test to determine the effectiveness of their design. In effect this paper serves to evaluate and improve upon the effectiveness of current web data search clustering techniques. Keywords: Web mining, database, data clustering, algorithms, web documents.
ISSN:1547-5840
1547-5867
DOI:10.28945/916