Document Clustering Based on Constructing Density Tree

This paper focuses on document clustering by clustering algorithm based on a DEnsityTree (CABDET) to improve the accuracy of clustering. The CABDET method constructs a density-based treestructure for every potential cluster by dynamically adjusting the radius of neighborhood according to local densi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of Tianjin University 2008-02, Vol.14 (1), p.21-26
1. Verfasser: 戴维迪 王文俊 侯越先 王英 张璐
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on document clustering by clustering algorithm based on a DEnsityTree (CABDET) to improve the accuracy of clustering. The CABDET method constructs a density-based treestructure for every potential cluster by dynamically adjusting the radius of neighborhood according to local density. It avoids density-based spatial clustering of applications with noise (DBSCAN) 's global density parameters and reduces input parameters to one. The results of experiment on real document show that CABDET achieves better accuracy of clustering than DBSCAN method. The CABDET algorithm obtains the max F-measure value 0.347 with the root node's radius of neighborhood 0.80, which is higher than 0.332 of DBSCAN with the radius of neighborhood 0.65 and the minimum number of objects 6.
ISSN:1006-4982
1995-8196
DOI:10.1007/s12209-008-0005-y