Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming
A series of crosslinked polypropylene samples with increased melt strengths were prepared via a copolymerization reaction, followed by melt processing. These crosslinked PP samples (PP‐Cs) were foamed by a temperature rising process using supercritical CO2 as the physical blowing agent. The introduc...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2008-07, Vol.48 (7), p.1312-1321 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1321 |
---|---|
container_issue | 7 |
container_start_page | 1312 |
container_title | Polymer engineering and science |
container_volume | 48 |
creator | Zhai, Wentao Wang, Hongying Yu, Jian Dong, Jinyong He, Jiasong |
description | A series of crosslinked polypropylene samples with increased melt strengths were prepared via a copolymerization reaction, followed by melt processing. These crosslinked PP samples (PP‐Cs) were foamed by a temperature rising process using supercritical CO2 as the physical blowing agent. The introduction of crosslinking structure resulted in PP‐Cs foams with well‐defined closed cell structure, decreased cell size, and increased cell density in comparison with a linear PP, which were attributed to the suppressed cell coalescence due to the significant increase in melt strength of PP‐Cs. Further increasing the crosslinking degree tended to enhance the suppression effect on the cell coalescence, and hence increase the cell density of PP foams under the same foaming conditions, especially at the longer foaming times. The well‐defined closed cell structure was observed at the foaming temperature of 170–250°C and saturation pressure of 12–20 MPa. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.21095 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_33542372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A181543645</galeid><sourcerecordid>A181543645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6075-4e1d109810c774948fc1bd637f169c777dbe8e201aea85534d8c189309395f633</originalsourceid><addsrcrecordid>eNp1kV9rFDEUxQdRcK0--A0GQcGH2SaTyZ95rGuthVJ1VQQRQjZzZ0mbzUyTGex8-97trgVlJQ-By-9czj0ny15SMqeElMc9hHlJSc0fZTPKK1WUglWPsxkhrCyYUupp9iylK4Is4_Us-7UA73PbGQ_JQrCQp7HvI6QETb6achu7lLwL1y6s8zTE0Q5jhNyFvO_81MeunzwEyDcOSYu7Rm9i3nZmg4Ln2ZPW-AQv9v9R9v3D6bfFx-Li09n54uSisIJIXlRAG7SsKLFSVnWlWktXjWCypaLGkWxWoKAk1IBRnLOqUZaqmpGa1bwVjB1lb3Z70c_NCGnQG5e2ZkyAbkyaMV6VTJYIvvoHvOrGGNCbLqkSlRT1Fip20BpD0S603RCNXeOV0fguQOtwfEIVxstExZGfH-DxNYCpHBS8_UuAzAC3w9qMKenzr8uD7H0REVrdR7cxcdKU6G3jGhvX940j-3p_nUnW-DaaYF16EJSkkrVkBLnjHfcbjU3_X6g_n17-2byPxCV0-qAw8VoLySTXPy7PtODv3v9cfiF6ye4AZc_HlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218647692</pqid></control><display><type>article</type><title>Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming</title><source>Access via Wiley Online Library</source><creator>Zhai, Wentao ; Wang, Hongying ; Yu, Jian ; Dong, Jinyong ; He, Jiasong</creator><creatorcontrib>Zhai, Wentao ; Wang, Hongying ; Yu, Jian ; Dong, Jinyong ; He, Jiasong</creatorcontrib><description>A series of crosslinked polypropylene samples with increased melt strengths were prepared via a copolymerization reaction, followed by melt processing. These crosslinked PP samples (PP‐Cs) were foamed by a temperature rising process using supercritical CO2 as the physical blowing agent. The introduction of crosslinking structure resulted in PP‐Cs foams with well‐defined closed cell structure, decreased cell size, and increased cell density in comparison with a linear PP, which were attributed to the suppressed cell coalescence due to the significant increase in melt strength of PP‐Cs. Further increasing the crosslinking degree tended to enhance the suppression effect on the cell coalescence, and hence increase the cell density of PP foams under the same foaming conditions, especially at the longer foaming times. The well‐defined closed cell structure was observed at the foaming temperature of 170–250°C and saturation pressure of 12–20 MPa. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.21095</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Cellular ; Chemical properties ; Crosslinked polymers ; Crosslinking polymerization ; Exact sciences and technology ; Foam ; Forms of application and semi-finished materials ; Methods ; Plastic foams ; Polymer industry, paints, wood ; Polymer networks ; Polypropylene ; Properties ; Technology of polymers ; Viscoelasticity</subject><ispartof>Polymer engineering and science, 2008-07, Vol.48 (7), p.1312-1321</ispartof><rights>Copyright © 2008 Society of Plastics Engineers</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2008 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Jul 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6075-4e1d109810c774948fc1bd637f169c777dbe8e201aea85534d8c189309395f633</citedby><cites>FETCH-LOGICAL-c6075-4e1d109810c774948fc1bd637f169c777dbe8e201aea85534d8c189309395f633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.21095$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.21095$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20479730$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Wentao</creatorcontrib><creatorcontrib>Wang, Hongying</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Dong, Jinyong</creatorcontrib><creatorcontrib>He, Jiasong</creatorcontrib><title>Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>A series of crosslinked polypropylene samples with increased melt strengths were prepared via a copolymerization reaction, followed by melt processing. These crosslinked PP samples (PP‐Cs) were foamed by a temperature rising process using supercritical CO2 as the physical blowing agent. The introduction of crosslinking structure resulted in PP‐Cs foams with well‐defined closed cell structure, decreased cell size, and increased cell density in comparison with a linear PP, which were attributed to the suppressed cell coalescence due to the significant increase in melt strength of PP‐Cs. Further increasing the crosslinking degree tended to enhance the suppression effect on the cell coalescence, and hence increase the cell density of PP foams under the same foaming conditions, especially at the longer foaming times. The well‐defined closed cell structure was observed at the foaming temperature of 170–250°C and saturation pressure of 12–20 MPa. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Cellular</subject><subject>Chemical properties</subject><subject>Crosslinked polymers</subject><subject>Crosslinking polymerization</subject><subject>Exact sciences and technology</subject><subject>Foam</subject><subject>Forms of application and semi-finished materials</subject><subject>Methods</subject><subject>Plastic foams</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer networks</subject><subject>Polypropylene</subject><subject>Properties</subject><subject>Technology of polymers</subject><subject>Viscoelasticity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV9rFDEUxQdRcK0--A0GQcGH2SaTyZ95rGuthVJ1VQQRQjZzZ0mbzUyTGex8-97trgVlJQ-By-9czj0ny15SMqeElMc9hHlJSc0fZTPKK1WUglWPsxkhrCyYUupp9iylK4Is4_Us-7UA73PbGQ_JQrCQp7HvI6QETb6achu7lLwL1y6s8zTE0Q5jhNyFvO_81MeunzwEyDcOSYu7Rm9i3nZmg4Ln2ZPW-AQv9v9R9v3D6bfFx-Li09n54uSisIJIXlRAG7SsKLFSVnWlWktXjWCypaLGkWxWoKAk1IBRnLOqUZaqmpGa1bwVjB1lb3Z70c_NCGnQG5e2ZkyAbkyaMV6VTJYIvvoHvOrGGNCbLqkSlRT1Fip20BpD0S603RCNXeOV0fguQOtwfEIVxstExZGfH-DxNYCpHBS8_UuAzAC3w9qMKenzr8uD7H0REVrdR7cxcdKU6G3jGhvX940j-3p_nUnW-DaaYF16EJSkkrVkBLnjHfcbjU3_X6g_n17-2byPxCV0-qAw8VoLySTXPy7PtODv3v9cfiF6ye4AZc_HlQ</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Zhai, Wentao</creator><creator>Wang, Hongying</creator><creator>Yu, Jian</creator><creator>Dong, Jinyong</creator><creator>He, Jiasong</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200807</creationdate><title>Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming</title><author>Zhai, Wentao ; Wang, Hongying ; Yu, Jian ; Dong, Jinyong ; He, Jiasong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6075-4e1d109810c774948fc1bd637f169c777dbe8e201aea85534d8c189309395f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Cellular</topic><topic>Chemical properties</topic><topic>Crosslinked polymers</topic><topic>Crosslinking polymerization</topic><topic>Exact sciences and technology</topic><topic>Foam</topic><topic>Forms of application and semi-finished materials</topic><topic>Methods</topic><topic>Plastic foams</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer networks</topic><topic>Polypropylene</topic><topic>Properties</topic><topic>Technology of polymers</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Wentao</creatorcontrib><creatorcontrib>Wang, Hongying</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Dong, Jinyong</creatorcontrib><creatorcontrib>He, Jiasong</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Wentao</au><au>Wang, Hongying</au><au>Yu, Jian</au><au>Dong, Jinyong</au><au>He, Jiasong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2008-07</date><risdate>2008</risdate><volume>48</volume><issue>7</issue><spage>1312</spage><epage>1321</epage><pages>1312-1321</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>A series of crosslinked polypropylene samples with increased melt strengths were prepared via a copolymerization reaction, followed by melt processing. These crosslinked PP samples (PP‐Cs) were foamed by a temperature rising process using supercritical CO2 as the physical blowing agent. The introduction of crosslinking structure resulted in PP‐Cs foams with well‐defined closed cell structure, decreased cell size, and increased cell density in comparison with a linear PP, which were attributed to the suppressed cell coalescence due to the significant increase in melt strength of PP‐Cs. Further increasing the crosslinking degree tended to enhance the suppression effect on the cell coalescence, and hence increase the cell density of PP foams under the same foaming conditions, especially at the longer foaming times. The well‐defined closed cell structure was observed at the foaming temperature of 170–250°C and saturation pressure of 12–20 MPa. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.21095</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2008-07, Vol.48 (7), p.1312-1321 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_miscellaneous_33542372 |
source | Access via Wiley Online Library |
subjects | Applied sciences Cellular Chemical properties Crosslinked polymers Crosslinking polymerization Exact sciences and technology Foam Forms of application and semi-finished materials Methods Plastic foams Polymer industry, paints, wood Polymer networks Polypropylene Properties Technology of polymers Viscoelasticity |
title | Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20coalescence%20suppressed%20by%20crosslinking%20structure%20in%20polypropylene%20microcellular%20foaming&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Zhai,%20Wentao&rft.date=2008-07&rft.volume=48&rft.issue=7&rft.spage=1312&rft.epage=1321&rft.pages=1312-1321&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.21095&rft_dat=%3Cgale_proqu%3EA181543645%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218647692&rft_id=info:pmid/&rft_galeid=A181543645&rfr_iscdi=true |