Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming
A series of crosslinked polypropylene samples with increased melt strengths were prepared via a copolymerization reaction, followed by melt processing. These crosslinked PP samples (PP‐Cs) were foamed by a temperature rising process using supercritical CO2 as the physical blowing agent. The introduc...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2008-07, Vol.48 (7), p.1312-1321 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of crosslinked polypropylene samples with increased melt strengths were prepared via a copolymerization reaction, followed by melt processing. These crosslinked PP samples (PP‐Cs) were foamed by a temperature rising process using supercritical CO2 as the physical blowing agent. The introduction of crosslinking structure resulted in PP‐Cs foams with well‐defined closed cell structure, decreased cell size, and increased cell density in comparison with a linear PP, which were attributed to the suppressed cell coalescence due to the significant increase in melt strength of PP‐Cs. Further increasing the crosslinking degree tended to enhance the suppression effect on the cell coalescence, and hence increase the cell density of PP foams under the same foaming conditions, especially at the longer foaming times. The well‐defined closed cell structure was observed at the foaming temperature of 170–250°C and saturation pressure of 12–20 MPa. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers |
---|---|
ISSN: | 0032-3888 1548-2634 |
DOI: | 10.1002/pen.21095 |