Strong convergence of composite iterative schemes for zeros of m-accretive operators in Banach spaces

We introduce a new composite iterative scheme to approximate a zero of an m -accretive operator A defined on uniform smooth Banach spaces and a reflexive Banach space having a weakly continuous duality map. It is shown that the iterative process in each case converges strongly to a zero of A . The r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2009-03, Vol.70 (5), p.1830-1840
Hauptverfasser: Ceng, L.-C., Khan, A.R., Ansari, Q.H., Yao, J.-C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new composite iterative scheme to approximate a zero of an m -accretive operator A defined on uniform smooth Banach spaces and a reflexive Banach space having a weakly continuous duality map. It is shown that the iterative process in each case converges strongly to a zero of A . The results presented in this paper substantially improve and extend the results due to Ceng et al. [L.C. Ceng, H.K. Xu, J.C. Yao, Strong convergence of a hybrid viscosity approximation method with perturbed mappings for nonexpansive and accretive operators, Taiwanese J. Math. (in press)], Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51–60] and Xu [H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006) 631–643]. Our work provides a new approach for the construction of a zero of m -accretive operators.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2008.02.083