Strong convergence of composite iterative schemes for zeros of m-accretive operators in Banach spaces
We introduce a new composite iterative scheme to approximate a zero of an m -accretive operator A defined on uniform smooth Banach spaces and a reflexive Banach space having a weakly continuous duality map. It is shown that the iterative process in each case converges strongly to a zero of A . The r...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009-03, Vol.70 (5), p.1830-1840 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new composite iterative scheme to approximate a zero of an
m
-accretive operator
A
defined on uniform smooth Banach spaces and a reflexive Banach space having a weakly continuous duality map. It is shown that the iterative process in each case converges strongly to a zero of
A
. The results presented in this paper substantially improve and extend the results due to Ceng et al. [L.C. Ceng, H.K. Xu, J.C. Yao, Strong convergence of a hybrid viscosity approximation method with perturbed mappings for nonexpansive and accretive operators, Taiwanese J. Math. (in press)], Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51–60] and Xu [H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006) 631–643]. Our work provides a new approach for the construction of a zero of
m
-accretive operators. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2008.02.083 |