Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses

In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2009-06, Vol.33 (6), p.2564-2574
Hauptverfasser: Wu, Huaiqin, Shan, Caihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2574
container_issue 6
container_start_page 2564
container_title Applied mathematical modelling
container_volume 33
creator Wu, Huaiqin
Shan, Caihong
description In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov function, we give a sufficient condition which ensures the uniqueness and global exponential stability of the periodic solution. The results of this paper show that the Forti’s conjecture is true for BAM neural networks with discontinuous neuron activations and impulses. Further, a numerical example is given to demonstrate the effectiveness of the results obtained in this paper.
doi_str_mv 10.1016/j.apm.2008.07.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33534665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X08001935</els_id><sourcerecordid>33534665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-c50b472e787910bd2ca06df6313b1cc6666b9f557376048eaa7fe36f2ef30f4f3</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhnOgEhR4gN58obdNx3Zi76onikqLRNUDIPVmOY4tZsnGqcdZtG-Pt4s4Fl_Glr7_9-irqk8cag5cfVnXdtrUAmBZg65BiKPqBCToxQqaP8fVR6I1ALTldVKlu2w7HDDvmB3tsCMkFmJik08Ye3SM4jBnjCOLgX27_MVGPyc7lJGfY3oi9oz5kfVILo4ZxznO9A8pAesybu0-S6W7Z7iZ5oE8nVUfgi2X89d5Wj1cf7-_-rm4_f3j5uryduEaKfLCtdA1Wni91CsOXS-cBdUHJbnsuHOqnG4V2lZLraBZemt18FIF4YOE0AR5Wn0-9E4p_p09ZbMpa_phsKMvaxopW9ko1b4LCmi4ksALyA-gS5Eo-WCmhBubdoaD2as3a1PUm716A9oU9SVz8VpuydkhJDs6pLeg4EKvFNeF-3rgfFGyRZ8MOfSj8z0m77LpI_7nlxeruJ2z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20416301</pqid></control><display><type>article</type><title>Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Huaiqin ; Shan, Caihong</creator><creatorcontrib>Wu, Huaiqin ; Shan, Caihong</creatorcontrib><description>In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov function, we give a sufficient condition which ensures the uniqueness and global exponential stability of the periodic solution. The results of this paper show that the Forti’s conjecture is true for BAM neural networks with discontinuous neuron activations and impulses. Further, a numerical example is given to demonstrate the effectiveness of the results obtained in this paper.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2008.07.022</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Differential inclusions ; Exact sciences and technology ; Global exponential stability ; Impulses ; Neural networks ; Neuron activation functions ; Periodic solution</subject><ispartof>Applied mathematical modelling, 2009-06, Vol.33 (6), p.2564-2574</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-c50b472e787910bd2ca06df6313b1cc6666b9f557376048eaa7fe36f2ef30f4f3</citedby><cites>FETCH-LOGICAL-c432t-c50b472e787910bd2ca06df6313b1cc6666b9f557376048eaa7fe36f2ef30f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2008.07.022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21279617$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Huaiqin</creatorcontrib><creatorcontrib>Shan, Caihong</creatorcontrib><title>Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses</title><title>Applied mathematical modelling</title><description>In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov function, we give a sufficient condition which ensures the uniqueness and global exponential stability of the periodic solution. The results of this paper show that the Forti’s conjecture is true for BAM neural networks with discontinuous neuron activations and impulses. Further, a numerical example is given to demonstrate the effectiveness of the results obtained in this paper.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Differential inclusions</subject><subject>Exact sciences and technology</subject><subject>Global exponential stability</subject><subject>Impulses</subject><subject>Neural networks</subject><subject>Neuron activation functions</subject><subject>Periodic solution</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhnOgEhR4gN58obdNx3Zi76onikqLRNUDIPVmOY4tZsnGqcdZtG-Pt4s4Fl_Glr7_9-irqk8cag5cfVnXdtrUAmBZg65BiKPqBCToxQqaP8fVR6I1ALTldVKlu2w7HDDvmB3tsCMkFmJik08Ye3SM4jBnjCOLgX27_MVGPyc7lJGfY3oi9oz5kfVILo4ZxznO9A8pAesybu0-S6W7Z7iZ5oE8nVUfgi2X89d5Wj1cf7-_-rm4_f3j5uryduEaKfLCtdA1Wni91CsOXS-cBdUHJbnsuHOqnG4V2lZLraBZemt18FIF4YOE0AR5Wn0-9E4p_p09ZbMpa_phsKMvaxopW9ko1b4LCmi4ksALyA-gS5Eo-WCmhBubdoaD2as3a1PUm716A9oU9SVz8VpuydkhJDs6pLeg4EKvFNeF-3rgfFGyRZ8MOfSj8z0m77LpI_7nlxeruJ2z</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Wu, Huaiqin</creator><creator>Shan, Caihong</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090601</creationdate><title>Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses</title><author>Wu, Huaiqin ; Shan, Caihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-c50b472e787910bd2ca06df6313b1cc6666b9f557376048eaa7fe36f2ef30f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Differential inclusions</topic><topic>Exact sciences and technology</topic><topic>Global exponential stability</topic><topic>Impulses</topic><topic>Neural networks</topic><topic>Neuron activation functions</topic><topic>Periodic solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Huaiqin</creatorcontrib><creatorcontrib>Shan, Caihong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Huaiqin</au><au>Shan, Caihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses</atitle><jtitle>Applied mathematical modelling</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>33</volume><issue>6</issue><spage>2564</spage><epage>2574</epage><pages>2564-2574</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov function, we give a sufficient condition which ensures the uniqueness and global exponential stability of the periodic solution. The results of this paper show that the Forti’s conjecture is true for BAM neural networks with discontinuous neuron activations and impulses. Further, a numerical example is given to demonstrate the effectiveness of the results obtained in this paper.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2008.07.022</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2009-06, Vol.33 (6), p.2564-2574
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_33534665
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Differential inclusions
Exact sciences and technology
Global exponential stability
Impulses
Neural networks
Neuron activation functions
Periodic solution
title Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20for%20periodic%20solution%20of%20BAM%20neural%20networks%20with%20discontinuous%20neuron%20activations%20and%20impulses&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Wu,%20Huaiqin&rft.date=2009-06-01&rft.volume=33&rft.issue=6&rft.spage=2564&rft.epage=2574&rft.pages=2564-2574&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2008.07.022&rft_dat=%3Cproquest_cross%3E33534665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20416301&rft_id=info:pmid/&rft_els_id=S0307904X08001935&rfr_iscdi=true