Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses
In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov fu...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2009-06, Vol.33 (6), p.2564-2574 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2574 |
---|---|
container_issue | 6 |
container_start_page | 2564 |
container_title | Applied mathematical modelling |
container_volume | 33 |
creator | Wu, Huaiqin Shan, Caihong |
description | In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov function, we give a sufficient condition which ensures the uniqueness and global exponential stability of the periodic solution. The results of this paper show that the Forti’s conjecture is true for BAM neural networks with discontinuous neuron activations and impulses. Further, a numerical example is given to demonstrate the effectiveness of the results obtained in this paper. |
doi_str_mv | 10.1016/j.apm.2008.07.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33534665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X08001935</els_id><sourcerecordid>33534665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-c50b472e787910bd2ca06df6313b1cc6666b9f557376048eaa7fe36f2ef30f4f3</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhnOgEhR4gN58obdNx3Zi76onikqLRNUDIPVmOY4tZsnGqcdZtG-Pt4s4Fl_Glr7_9-irqk8cag5cfVnXdtrUAmBZg65BiKPqBCToxQqaP8fVR6I1ALTldVKlu2w7HDDvmB3tsCMkFmJik08Ye3SM4jBnjCOLgX27_MVGPyc7lJGfY3oi9oz5kfVILo4ZxznO9A8pAesybu0-S6W7Z7iZ5oE8nVUfgi2X89d5Wj1cf7-_-rm4_f3j5uryduEaKfLCtdA1Wni91CsOXS-cBdUHJbnsuHOqnG4V2lZLraBZemt18FIF4YOE0AR5Wn0-9E4p_p09ZbMpa_phsKMvaxopW9ko1b4LCmi4ksALyA-gS5Eo-WCmhBubdoaD2as3a1PUm716A9oU9SVz8VpuydkhJDs6pLeg4EKvFNeF-3rgfFGyRZ8MOfSj8z0m77LpI_7nlxeruJ2z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20416301</pqid></control><display><type>article</type><title>Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Huaiqin ; Shan, Caihong</creator><creatorcontrib>Wu, Huaiqin ; Shan, Caihong</creatorcontrib><description>In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov function, we give a sufficient condition which ensures the uniqueness and global exponential stability of the periodic solution. The results of this paper show that the Forti’s conjecture is true for BAM neural networks with discontinuous neuron activations and impulses. Further, a numerical example is given to demonstrate the effectiveness of the results obtained in this paper.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2008.07.022</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Differential inclusions ; Exact sciences and technology ; Global exponential stability ; Impulses ; Neural networks ; Neuron activation functions ; Periodic solution</subject><ispartof>Applied mathematical modelling, 2009-06, Vol.33 (6), p.2564-2574</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-c50b472e787910bd2ca06df6313b1cc6666b9f557376048eaa7fe36f2ef30f4f3</citedby><cites>FETCH-LOGICAL-c432t-c50b472e787910bd2ca06df6313b1cc6666b9f557376048eaa7fe36f2ef30f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2008.07.022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21279617$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Huaiqin</creatorcontrib><creatorcontrib>Shan, Caihong</creatorcontrib><title>Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses</title><title>Applied mathematical modelling</title><description>In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov function, we give a sufficient condition which ensures the uniqueness and global exponential stability of the periodic solution. The results of this paper show that the Forti’s conjecture is true for BAM neural networks with discontinuous neuron activations and impulses. Further, a numerical example is given to demonstrate the effectiveness of the results obtained in this paper.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Differential inclusions</subject><subject>Exact sciences and technology</subject><subject>Global exponential stability</subject><subject>Impulses</subject><subject>Neural networks</subject><subject>Neuron activation functions</subject><subject>Periodic solution</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhnOgEhR4gN58obdNx3Zi76onikqLRNUDIPVmOY4tZsnGqcdZtG-Pt4s4Fl_Glr7_9-irqk8cag5cfVnXdtrUAmBZg65BiKPqBCToxQqaP8fVR6I1ALTldVKlu2w7HDDvmB3tsCMkFmJik08Ye3SM4jBnjCOLgX27_MVGPyc7lJGfY3oi9oz5kfVILo4ZxznO9A8pAesybu0-S6W7Z7iZ5oE8nVUfgi2X89d5Wj1cf7-_-rm4_f3j5uryduEaKfLCtdA1Wni91CsOXS-cBdUHJbnsuHOqnG4V2lZLraBZemt18FIF4YOE0AR5Wn0-9E4p_p09ZbMpa_phsKMvaxopW9ko1b4LCmi4ksALyA-gS5Eo-WCmhBubdoaD2as3a1PUm716A9oU9SVz8VpuydkhJDs6pLeg4EKvFNeF-3rgfFGyRZ8MOfSj8z0m77LpI_7nlxeruJ2z</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Wu, Huaiqin</creator><creator>Shan, Caihong</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090601</creationdate><title>Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses</title><author>Wu, Huaiqin ; Shan, Caihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-c50b472e787910bd2ca06df6313b1cc6666b9f557376048eaa7fe36f2ef30f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Differential inclusions</topic><topic>Exact sciences and technology</topic><topic>Global exponential stability</topic><topic>Impulses</topic><topic>Neural networks</topic><topic>Neuron activation functions</topic><topic>Periodic solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Huaiqin</creatorcontrib><creatorcontrib>Shan, Caihong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Huaiqin</au><au>Shan, Caihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses</atitle><jtitle>Applied mathematical modelling</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>33</volume><issue>6</issue><spage>2564</spage><epage>2574</epage><pages>2564-2574</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov function, we give a sufficient condition which ensures the uniqueness and global exponential stability of the periodic solution. The results of this paper show that the Forti’s conjecture is true for BAM neural networks with discontinuous neuron activations and impulses. Further, a numerical example is given to demonstrate the effectiveness of the results obtained in this paper.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2008.07.022</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 2009-06, Vol.33 (6), p.2564-2574 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_33534665 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Differential inclusions Exact sciences and technology Global exponential stability Impulses Neural networks Neuron activation functions Periodic solution |
title | Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20for%20periodic%20solution%20of%20BAM%20neural%20networks%20with%20discontinuous%20neuron%20activations%20and%20impulses&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Wu,%20Huaiqin&rft.date=2009-06-01&rft.volume=33&rft.issue=6&rft.spage=2564&rft.epage=2574&rft.pages=2564-2574&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2008.07.022&rft_dat=%3Cproquest_cross%3E33534665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20416301&rft_id=info:pmid/&rft_els_id=S0307904X08001935&rfr_iscdi=true |