Stability analysis for periodic solution of BAM neural networks with discontinuous neuron activations and impulses
In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov fu...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2009-06, Vol.33 (6), p.2564-2574 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a general class of BAM neural networks with discontinuous neuron activations and impulses. By using the fixed point theorem in differential inclusions theory, we investigate the existence of periodic solution for this neural network. By constructing the suitable Lyapunov function, we give a sufficient condition which ensures the uniqueness and global exponential stability of the periodic solution. The results of this paper show that the Forti’s conjecture is true for BAM neural networks with discontinuous neuron activations and impulses. Further, a numerical example is given to demonstrate the effectiveness of the results obtained in this paper. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2008.07.022 |