The effect of annealing on the deformation behaviour and microstructure of crystallized Mg–23.5Ni (wt.%) alloy
Rapidly solidified amorphous Mg–23.5Ni (wt.%) ribbons were crystallized at 300 and 400 °C for 90 min. After annealing at 300 °C the microstructure was heterogeneous, consisting of rounded eutectic–lamellar domains, which contained magnesium grains smaller than 500 nm. In the case of ribbons annealed...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2008-06, Vol.43 (12), p.4257-4263 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rapidly solidified amorphous Mg–23.5Ni (wt.%) ribbons were crystallized at 300 and 400 °C for 90 min. After annealing at 300 °C the microstructure was heterogeneous, consisting of rounded eutectic–lamellar domains, which contained magnesium grains smaller than 500 nm. In the case of ribbons annealed at 400 °C the microstructure, however, was homogenous, and composed of well-formed magnesium grains and Mg
2
Ni particles. At room temperature both crystallized materials were brittle due to the high volume fraction of Mg
2
Ni particles, but they exhibited some ductility with increasing test temperature. Above 200 °C, the microstructure of the ribbons annealed at 300 °C was characterised by the formation of particle free zones during the tensile test. This structure was not observed in the material annealed at 400 °C. Deformation behaviour and changes in the microstructure during plastic flow of both crystallized materials were explained according to grain boundary sliding mechanisms. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-008-2616-z |