Self-extensions of Verma modules and differential forms on opers

We compute the algebras of self-extensions of the vacuum module and the Verma modules over an affine Kac–Moody algebra $\hat{\mathfrak g}$ in suitable categories of Harish-Chandra modules. We show that at the critical level these algebras are isomorphic to the algebras of differential forms on vario...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2006-03, Vol.142 (2), p.477-500
Hauptverfasser: Frenkel, Edward, Teleman, Constantin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the algebras of self-extensions of the vacuum module and the Verma modules over an affine Kac–Moody algebra $\hat{\mathfrak g}$ in suitable categories of Harish-Chandra modules. We show that at the critical level these algebras are isomorphic to the algebras of differential forms on various spaces of opers associated to the Langlands dual Lie algebra of ${\mathfrak g}$, whereas away from the critical level they become trivial. These results rely on and generalize the description of the corresponding algebras of endomorphisms obtained by Feigin and Frenkel and the description of the corresponding graded versions due to Fishel, Grojnowski and Teleman.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X05001958