Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings

Mine tailings containing high contents of arsenic and heavy metals are potential environmental contamination sources. Column experiments were conducted in this study to evaluate the feasibility of using a rhamnolipid biosurfactant (JBR425) to enhance the removal of arsenic and heavy metals from an o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process biochemistry (1991) 2009-03, Vol.44 (3), p.296-301
Hauptverfasser: Wang, Suiling, Mulligan, Catherine N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mine tailings containing high contents of arsenic and heavy metals are potential environmental contamination sources. Column experiments were conducted in this study to evaluate the feasibility of using a rhamnolipid biosurfactant (JBR425) to enhance the removal of arsenic and heavy metals from an oxidized mine tailings sample collected from Bathurst, Canada. Capillary electrophoresis (CE) analyses indicated that arsenate [As(V)] was the only extractable arsenic species in the mine tailings. The addition of rhamnolipids did not change the oxidation state of arsenic. It was found that a 0.1% rhamnolipid solution (initial pH adjusted to 11) could significantly enhance the removal of arsenic and heavy metals (i.e., Cu, Pb and Zn) simultaneously. The accumulative removal of arsenic, Cu, Pb and Zn reached 148, 74, 2379, and 259 mg/kg after a 70-pore-volume flushing, respectively. Moreover, the mobilization of arsenic and heavy metals by rhamnolipids was found to be positively correlated with that of Fe, and the mobilization of arsenic was also positively correlated to that of the heavy metals. The mobilization of co-existing metals, to some extent, might enhance arsenic mobilization in the presence of rhamnolipids by helping incorporate it into aqueous organic complexes or micelles through metal-bridging mechanisms.
ISSN:1359-5113
1873-3298
DOI:10.1016/j.procbio.2008.11.006