Real-Time Body Pose Recognition Using 2D or 3D Haarlets
This article presents a novel approach to markerless real-time pose recognition in a multicamera setup. Body pose is retrieved using example-based classification based on Haar wavelet-like features to allow for real-time pose recognition. Average Neighborhood Margin Maximization (ANMM) is introduced...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2009-06, Vol.83 (1), p.72-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a novel approach to markerless real-time pose recognition in a multicamera setup. Body pose is retrieved using example-based classification based on Haar wavelet-like features to allow for real-time pose recognition. Average Neighborhood Margin Maximization (ANMM) is introduced as a powerful new technique to train Haar-like features. The rotation invariant approach is implemented for both 2D classification based on silhouettes, and 3D classification based on visual hulls. |
---|---|
ISSN: | 0920-5691 1573-1405 |
DOI: | 10.1007/s11263-009-0218-0 |