Real-Time Body Pose Recognition Using 2D or 3D Haarlets

This article presents a novel approach to markerless real-time pose recognition in a multicamera setup. Body pose is retrieved using example-based classification based on Haar wavelet-like features to allow for real-time pose recognition. Average Neighborhood Margin Maximization (ANMM) is introduced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2009-06, Vol.83 (1), p.72-84
Hauptverfasser: Van den Bergh, Michael, Koller-Meier, Esther, Van Gool, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a novel approach to markerless real-time pose recognition in a multicamera setup. Body pose is retrieved using example-based classification based on Haar wavelet-like features to allow for real-time pose recognition. Average Neighborhood Margin Maximization (ANMM) is introduced as a powerful new technique to train Haar-like features. The rotation invariant approach is implemented for both 2D classification based on silhouettes, and 3D classification based on visual hulls.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-009-0218-0