Protein release from alginate matrices
There are a variety of both natural and synthetic polymeric systems that have been investigated for the controlled release of proteins. Many of the procedures employed to incorporate proteins into a polymeric matrix can be harsh and often cause denaturation of the active agent. Alginate, a naturally...
Gespeichert in:
Veröffentlicht in: | Advanced drug delivery reviews 1998-05, Vol.31 (3), p.267-285 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are a variety of both natural and synthetic polymeric systems that have been investigated for the controlled release of proteins. Many of the procedures employed to incorporate proteins into a polymeric matrix can be harsh and often cause denaturation of the active agent. Alginate, a naturally occurring biopolymer extracted from brown algae (kelp), has several unique properties that have enabled it to be used as a matrix for the entrapment and/or delivery of a variety of biological agents. Alginate polymers are a family of linear unbranched polysaccharides which contain varying amounts of 1,4′-linked β-
d-mannuronic acid and α-
l-guluronic acid residues. The residues may vary widely in composition and sequence and are arranged in a pattern of blocks along the chain. Alginate can be ionically crosslinked by the addition of divalent cations in aqueous solution. The relatively mild gelation process has enabled not only proteins, but cells and DNA to be incorporated into alginate matrices with retention of full biological activity. Furthermore, by selection of the type of alginate and coating agent, the pore size, degradation rate, and ultimately release kinetics can be controlled. Gels of different morphologies can be prepared including large block matrices, large beads (>1 mm in diameter) and microbeads ( |
---|---|
ISSN: | 0169-409X 1872-8294 |
DOI: | 10.1016/S0169-409X(97)00124-5 |