Period-doubling bifurcation in an extended van der Pol system with bounded random parameter

An extended van der Pol system with bounded random parameter subjected to harmonic excitation is investigated by Chebyshev polynomial approximation. Firstly the stochastic extended van der Pol system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then we ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2008-12, Vol.13 (10), p.2256-2265
Hauptverfasser: Ma, Shaojuan, Xu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2265
container_issue 10
container_start_page 2256
container_title Communications in nonlinear science & numerical simulation
container_volume 13
creator Ma, Shaojuan
Xu, Wei
description An extended van der Pol system with bounded random parameter subjected to harmonic excitation is investigated by Chebyshev polynomial approximation. Firstly the stochastic extended van der Pol system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then we explored nonlinear dynamical behavior about period-doubling bifurcation in stochastic system. Numerical simulations show that similar to the conventional period-doubling phenomenon in deterministic extended van der Pol system, stochastic period-doubling bifurcation may also occur in the stochastic extended van der Pol system. Besides, different from the deterministic case, in addition to the conventional bifurcation parameters, i.e. the amplitude and frequency of harmonic excitation, in the stochastic case the intensity of random parameter should also be taken as a new bifurcation parameter.
doi_str_mv 10.1016/j.cnsns.2007.05.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33439822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S100757040700158X</els_id><sourcerecordid>33439822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ee9ef4639b220b86e636f460b191f2d7c8301e8dc498323f7a26b691973580973</originalsourceid><addsrcrecordid>eNp9ULtOAzEQtBBIhMAX0Liiu8OPe_gKChTxkiKRAioKy2fvgaM7O9h3QP4eJ6Gm2d3RzOxqB6FLSnJKaHW9zrWLLuaMkDonZU44OUIzKmqR1awujtOcmKysSXGKzmJck-RqymKG3lYQrDeZ8VPbW_eOW9tNQavReoetw8ph-BnBGTD4KwEDAa98j-M2jjDgbzt-4NZPez4oZ_yANyqoAUYI5-ikU32Ei78-R6_3dy-Lx2z5_PC0uF1mmvNizAAa6IqKNy1jpBUVVLxKmLS0oR0ztRacUBBGF43gjHe1YlVbNbSpeSlIqnN0ddi7Cf5zgjjKwUYNfa8c-CnKdIU3grEk5AehDj7GAJ3cBDuosJWUyF2Qci33QcpdkJKUMgWZXDcHF6QfviwEGbUFp8HYAHqUxtt__b_5fX1m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33439822</pqid></control><display><type>article</type><title>Period-doubling bifurcation in an extended van der Pol system with bounded random parameter</title><source>Elsevier ScienceDirect Journals</source><creator>Ma, Shaojuan ; Xu, Wei</creator><creatorcontrib>Ma, Shaojuan ; Xu, Wei</creatorcontrib><description>An extended van der Pol system with bounded random parameter subjected to harmonic excitation is investigated by Chebyshev polynomial approximation. Firstly the stochastic extended van der Pol system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then we explored nonlinear dynamical behavior about period-doubling bifurcation in stochastic system. Numerical simulations show that similar to the conventional period-doubling phenomenon in deterministic extended van der Pol system, stochastic period-doubling bifurcation may also occur in the stochastic extended van der Pol system. Besides, different from the deterministic case, in addition to the conventional bifurcation parameters, i.e. the amplitude and frequency of harmonic excitation, in the stochastic case the intensity of random parameter should also be taken as a new bifurcation parameter.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2007.05.030</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Arch-like probability density function ; Chebyshev polynomial approximation ; Extended van der Pol system ; Period-doubling bifurcation</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2008-12, Vol.13 (10), p.2256-2265</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ee9ef4639b220b86e636f460b191f2d7c8301e8dc498323f7a26b691973580973</citedby><cites>FETCH-LOGICAL-c334t-ee9ef4639b220b86e636f460b191f2d7c8301e8dc498323f7a26b691973580973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S100757040700158X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ma, Shaojuan</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><title>Period-doubling bifurcation in an extended van der Pol system with bounded random parameter</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>An extended van der Pol system with bounded random parameter subjected to harmonic excitation is investigated by Chebyshev polynomial approximation. Firstly the stochastic extended van der Pol system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then we explored nonlinear dynamical behavior about period-doubling bifurcation in stochastic system. Numerical simulations show that similar to the conventional period-doubling phenomenon in deterministic extended van der Pol system, stochastic period-doubling bifurcation may also occur in the stochastic extended van der Pol system. Besides, different from the deterministic case, in addition to the conventional bifurcation parameters, i.e. the amplitude and frequency of harmonic excitation, in the stochastic case the intensity of random parameter should also be taken as a new bifurcation parameter.</description><subject>Arch-like probability density function</subject><subject>Chebyshev polynomial approximation</subject><subject>Extended van der Pol system</subject><subject>Period-doubling bifurcation</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOAzEQtBBIhMAX0Liiu8OPe_gKChTxkiKRAioKy2fvgaM7O9h3QP4eJ6Gm2d3RzOxqB6FLSnJKaHW9zrWLLuaMkDonZU44OUIzKmqR1awujtOcmKysSXGKzmJck-RqymKG3lYQrDeZ8VPbW_eOW9tNQavReoetw8ph-BnBGTD4KwEDAa98j-M2jjDgbzt-4NZPez4oZ_yANyqoAUYI5-ikU32Ei78-R6_3dy-Lx2z5_PC0uF1mmvNizAAa6IqKNy1jpBUVVLxKmLS0oR0ztRacUBBGF43gjHe1YlVbNbSpeSlIqnN0ddi7Cf5zgjjKwUYNfa8c-CnKdIU3grEk5AehDj7GAJ3cBDuosJWUyF2Qci33QcpdkJKUMgWZXDcHF6QfviwEGbUFp8HYAHqUxtt__b_5fX1m</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Ma, Shaojuan</creator><creator>Xu, Wei</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200812</creationdate><title>Period-doubling bifurcation in an extended van der Pol system with bounded random parameter</title><author>Ma, Shaojuan ; Xu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ee9ef4639b220b86e636f460b191f2d7c8301e8dc498323f7a26b691973580973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Arch-like probability density function</topic><topic>Chebyshev polynomial approximation</topic><topic>Extended van der Pol system</topic><topic>Period-doubling bifurcation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shaojuan</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shaojuan</au><au>Xu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Period-doubling bifurcation in an extended van der Pol system with bounded random parameter</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2008-12</date><risdate>2008</risdate><volume>13</volume><issue>10</issue><spage>2256</spage><epage>2265</epage><pages>2256-2265</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>An extended van der Pol system with bounded random parameter subjected to harmonic excitation is investigated by Chebyshev polynomial approximation. Firstly the stochastic extended van der Pol system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then we explored nonlinear dynamical behavior about period-doubling bifurcation in stochastic system. Numerical simulations show that similar to the conventional period-doubling phenomenon in deterministic extended van der Pol system, stochastic period-doubling bifurcation may also occur in the stochastic extended van der Pol system. Besides, different from the deterministic case, in addition to the conventional bifurcation parameters, i.e. the amplitude and frequency of harmonic excitation, in the stochastic case the intensity of random parameter should also be taken as a new bifurcation parameter.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2007.05.030</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2008-12, Vol.13 (10), p.2256-2265
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_miscellaneous_33439822
source Elsevier ScienceDirect Journals
subjects Arch-like probability density function
Chebyshev polynomial approximation
Extended van der Pol system
Period-doubling bifurcation
title Period-doubling bifurcation in an extended van der Pol system with bounded random parameter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Period-doubling%20bifurcation%20in%20an%20extended%20van%20der%20Pol%20system%20with%20bounded%20random%20parameter&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Ma,%20Shaojuan&rft.date=2008-12&rft.volume=13&rft.issue=10&rft.spage=2256&rft.epage=2265&rft.pages=2256-2265&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2007.05.030&rft_dat=%3Cproquest_cross%3E33439822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33439822&rft_id=info:pmid/&rft_els_id=S100757040700158X&rfr_iscdi=true