Period-doubling bifurcation in an extended van der Pol system with bounded random parameter

An extended van der Pol system with bounded random parameter subjected to harmonic excitation is investigated by Chebyshev polynomial approximation. Firstly the stochastic extended van der Pol system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then we ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2008-12, Vol.13 (10), p.2256-2265
Hauptverfasser: Ma, Shaojuan, Xu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An extended van der Pol system with bounded random parameter subjected to harmonic excitation is investigated by Chebyshev polynomial approximation. Firstly the stochastic extended van der Pol system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then we explored nonlinear dynamical behavior about period-doubling bifurcation in stochastic system. Numerical simulations show that similar to the conventional period-doubling phenomenon in deterministic extended van der Pol system, stochastic period-doubling bifurcation may also occur in the stochastic extended van der Pol system. Besides, different from the deterministic case, in addition to the conventional bifurcation parameters, i.e. the amplitude and frequency of harmonic excitation, in the stochastic case the intensity of random parameter should also be taken as a new bifurcation parameter.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2007.05.030