On the Minimal Density of Triangles in Graphs
For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ) of triangles in a graph with edge density ρ? We completely solve this problem by proving that $$ g_3(\rho) =\frac{(t-1)\ofb{t-2\sqrt{t(t-\rho(t+1))}}\ofb{t+\sqrt{t(t-\rho(t+1))}}^2}{t^2(t+1)^2},$$ where $t\df \lfloor...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2008-07, Vol.17 (4), p.603-618 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 618 |
---|---|
container_issue | 4 |
container_start_page | 603 |
container_title | Combinatorics, probability & computing |
container_volume | 17 |
creator | RAZBOROV, ALEXANDER A. |
description | For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ) of triangles in a graph with edge density ρ? We completely solve this problem by proving that
$$ g_3(\rho)
=\frac{(t-1)\ofb{t-2\sqrt{t(t-\rho(t+1))}}\ofb{t+\sqrt{t(t-\rho(t+1))}}^2}{t^2(t+1)^2},$$
where $t\df \lfloor 1/(1-\rho)\rfloor$ is the integer such that $\rho\in\bigl[ 1-\frac 1t,1-\frac 1{t+1}\bigr]$. |
doi_str_mv | 10.1017/S0963548308009085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33365052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0963548308009085</cupid><sourcerecordid>33365052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-db8019b138d3f56de7460ee29d041b1e4efbfdff1b03742ab9bc9d80940863ae3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwiDtwC6_gn9pFSWpAKFaKIo2UndpuSJsVOJfr2JGoFEojTHuabnd1B6BzDFQacXr-A5IRRQUAASBDsAPUw5TJOMCeHqNfJcacfo5MQlgDAGIceiqdV1Cxs9FhUxUqX0dBWoWi2Ue2imS90NS9tiIoqGnu9XoRTdOR0GezZfvbR6-hudnsfT6bjh9ubSZxRQpo4NwKwNJiInDjGc5tSDtYmMgeKDbbUOuNy57ABktJEG2kymQuQFAQn2pI-utztXfv6Y2NDo1ZFyGxZ6srWm6AIIZwBS1rw4he4rDe-am9TCRDJWCrSFsI7KPN1CN46tfbts36rMKiuPfWnvdYT7zxFaOznt0H7d8VTkjLFx89qOHgaDOXbSHU82WfolfFFPrc_l_yf8gXo334a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203955787</pqid></control><display><type>article</type><title>On the Minimal Density of Triangles in Graphs</title><source>Cambridge University Press Journals Complete</source><creator>RAZBOROV, ALEXANDER A.</creator><creatorcontrib>RAZBOROV, ALEXANDER A.</creatorcontrib><description>For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ) of triangles in a graph with edge density ρ? We completely solve this problem by proving that
$$ g_3(\rho)
=\frac{(t-1)\ofb{t-2\sqrt{t(t-\rho(t+1))}}\ofb{t+\sqrt{t(t-\rho(t+1))}}^2}{t^2(t+1)^2},$$
where $t\df \lfloor 1/(1-\rho)\rfloor$ is the integer such that $\rho\in\bigl[ 1-\frac 1t,1-\frac 1{t+1}\bigr]$.</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548308009085</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Combinatorics, probability & computing, 2008-07, Vol.17 (4), p.603-618</ispartof><rights>Copyright © Cambridge University Press 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-db8019b138d3f56de7460ee29d041b1e4efbfdff1b03742ab9bc9d80940863ae3</citedby><cites>FETCH-LOGICAL-c433t-db8019b138d3f56de7460ee29d041b1e4efbfdff1b03742ab9bc9d80940863ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0963548308009085/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>RAZBOROV, ALEXANDER A.</creatorcontrib><title>On the Minimal Density of Triangles in Graphs</title><title>Combinatorics, probability & computing</title><addtitle>Combinator. Probab. Comp</addtitle><description>For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ) of triangles in a graph with edge density ρ? We completely solve this problem by proving that
$$ g_3(\rho)
=\frac{(t-1)\ofb{t-2\sqrt{t(t-\rho(t+1))}}\ofb{t+\sqrt{t(t-\rho(t+1))}}^2}{t^2(t+1)^2},$$
where $t\df \lfloor 1/(1-\rho)\rfloor$ is the integer such that $\rho\in\bigl[ 1-\frac 1t,1-\frac 1{t+1}\bigr]$.</description><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwiDtwC6_gn9pFSWpAKFaKIo2UndpuSJsVOJfr2JGoFEojTHuabnd1B6BzDFQacXr-A5IRRQUAASBDsAPUw5TJOMCeHqNfJcacfo5MQlgDAGIceiqdV1Cxs9FhUxUqX0dBWoWi2Ue2imS90NS9tiIoqGnu9XoRTdOR0GezZfvbR6-hudnsfT6bjh9ubSZxRQpo4NwKwNJiInDjGc5tSDtYmMgeKDbbUOuNy57ABktJEG2kymQuQFAQn2pI-utztXfv6Y2NDo1ZFyGxZ6srWm6AIIZwBS1rw4he4rDe-am9TCRDJWCrSFsI7KPN1CN46tfbts36rMKiuPfWnvdYT7zxFaOznt0H7d8VTkjLFx89qOHgaDOXbSHU82WfolfFFPrc_l_yf8gXo334a</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>RAZBOROV, ALEXANDER A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20080701</creationdate><title>On the Minimal Density of Triangles in Graphs</title><author>RAZBOROV, ALEXANDER A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-db8019b138d3f56de7460ee29d041b1e4efbfdff1b03742ab9bc9d80940863ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RAZBOROV, ALEXANDER A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Combinatorics, probability & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RAZBOROV, ALEXANDER A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Minimal Density of Triangles in Graphs</atitle><jtitle>Combinatorics, probability & computing</jtitle><addtitle>Combinator. Probab. Comp</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>17</volume><issue>4</issue><spage>603</spage><epage>618</epage><pages>603-618</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ) of triangles in a graph with edge density ρ? We completely solve this problem by proving that
$$ g_3(\rho)
=\frac{(t-1)\ofb{t-2\sqrt{t(t-\rho(t+1))}}\ofb{t+\sqrt{t(t-\rho(t+1))}}^2}{t^2(t+1)^2},$$
where $t\df \lfloor 1/(1-\rho)\rfloor$ is the integer such that $\rho\in\bigl[ 1-\frac 1t,1-\frac 1{t+1}\bigr]$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0963548308009085</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-5483 |
ispartof | Combinatorics, probability & computing, 2008-07, Vol.17 (4), p.603-618 |
issn | 0963-5483 1469-2163 |
language | eng |
recordid | cdi_proquest_miscellaneous_33365052 |
source | Cambridge University Press Journals Complete |
title | On the Minimal Density of Triangles in Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Minimal%20Density%20of%20Triangles%20in%20Graphs&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=RAZBOROV,%20ALEXANDER%20A.&rft.date=2008-07-01&rft.volume=17&rft.issue=4&rft.spage=603&rft.epage=618&rft.pages=603-618&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548308009085&rft_dat=%3Cproquest_cross%3E33365052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203955787&rft_id=info:pmid/&rft_cupid=10_1017_S0963548308009085&rfr_iscdi=true |