On the Minimal Density of Triangles in Graphs

For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ) of triangles in a graph with edge density ρ? We completely solve this problem by proving that $$ g_3(\rho) =\frac{(t-1)\ofb{t-2\sqrt{t(t-\rho(t+1))}}\ofb{t+\sqrt{t(t-\rho(t+1))}}^2}{t^2(t+1)^2},$$ where $t\df \lfloor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2008-07, Vol.17 (4), p.603-618
1. Verfasser: RAZBOROV, ALEXANDER A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ) of triangles in a graph with edge density ρ? We completely solve this problem by proving that $$ g_3(\rho) =\frac{(t-1)\ofb{t-2\sqrt{t(t-\rho(t+1))}}\ofb{t+\sqrt{t(t-\rho(t+1))}}^2}{t^2(t+1)^2},$$ where $t\df \lfloor 1/(1-\rho)\rfloor$ is the integer such that $\rho\in\bigl[ 1-\frac 1t,1-\frac 1{t+1}\bigr]$.
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548308009085