On the Minimal Density of Triangles in Graphs
For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ) of triangles in a graph with edge density ρ? We completely solve this problem by proving that $$ g_3(\rho) =\frac{(t-1)\ofb{t-2\sqrt{t(t-\rho(t+1))}}\ofb{t+\sqrt{t(t-\rho(t+1))}}^2}{t^2(t+1)^2},$$ where $t\df \lfloor...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2008-07, Vol.17 (4), p.603-618 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a fixed ρ ∈ [0, 1], what is (asymptotically) the minimal possible density g3(ρ) of triangles in a graph with edge density ρ? We completely solve this problem by proving that
$$ g_3(\rho)
=\frac{(t-1)\ofb{t-2\sqrt{t(t-\rho(t+1))}}\ofb{t+\sqrt{t(t-\rho(t+1))}}^2}{t^2(t+1)^2},$$
where $t\df \lfloor 1/(1-\rho)\rfloor$ is the integer such that $\rho\in\bigl[ 1-\frac 1t,1-\frac 1{t+1}\bigr]$. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548308009085 |