Long-Range Percolation Mixing Time

We provide an estimate, sharp up to poly-logarithmic factors, of the asymptotic almost sure mixing time of the graph created by long-range percolation on the cycle of length N ($\Integer/N\Integer$). While it is known that the asymptotic almost sure diameter drops from linear to poly-logarithmic as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2008-07, Vol.17 (4), p.487-494
Hauptverfasser: BENJAMINI, ITAI, BERGER, NOAM, YADIN, ARIEL
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide an estimate, sharp up to poly-logarithmic factors, of the asymptotic almost sure mixing time of the graph created by long-range percolation on the cycle of length N ($\Integer/N\Integer$). While it is known that the asymptotic almost sure diameter drops from linear to poly-logarithmic as the exponent s decreases below 2 [4, 9], the asymptotic almost sure mixing time drops from N2 only to Ns-1 (up to poly-logarithmic factors).
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548308008948