Log-periodic modulation in one-dimensional random walks

We have studied the diffusion of a single particle on a one-dimensional lattice. It is shown that, for a self-similar distribution of hopping rates, the time dependence of the mean-square displacement follows an anomalous power law modulated by logarithmic periodic oscillations. The origin of this m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europhysics letters 2009-01, Vol.85 (2), p.20008-20008(6)
Hauptverfasser: Padilla, L, Mártin, H. O, Iguain, J. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have studied the diffusion of a single particle on a one-dimensional lattice. It is shown that, for a self-similar distribution of hopping rates, the time dependence of the mean-square displacement follows an anomalous power law modulated by logarithmic periodic oscillations. The origin of this modulation is due to the dependence of the diffusion coefficient on the length scale. Both the random walk exponent and the period of the modulation are analytically calculated and confirmed by Monte Carlo simulations.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/85/20008