A Deconvolution-Based Approach to Structural Dynamics System Identification and Response Prediction

Two general linear time-varying system identification methods for multiple-input multiple-output systems are proposed based on the proper orthogonal decomposition (POD). The method applies the POD to express response data for linear or nonlinear systems as a modal sum of proper orthogonal modes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and acoustics 2008-06, Vol.130 (3), p.031010 (8)-031010 (8)
Hauptverfasser: Allison, Timothy C, Miller, A. Keith, Inman, Daniel J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two general linear time-varying system identification methods for multiple-input multiple-output systems are proposed based on the proper orthogonal decomposition (POD). The method applies the POD to express response data for linear or nonlinear systems as a modal sum of proper orthogonal modes and proper orthogonal coordinates (POCs). Drawing upon mode summation theory, an analytical expression for the POCs is developed, and two deconvolution-based methods are devised for modifying them to predict the response of the system to new loads. The first method accomplishes the identification with a single-load-response data set, but its applicability is limited to lightly damped systems with a mass matrix proportional to the identity matrix. The second method uses multiple-load-response data sets to overcome these limitations. The methods are applied to construct predictive models for linear and nonlinear beam examples without using prior knowledge of a system model. The method is also applied to a linear experiment to demonstrate a potential experimental setup and the method’s feasibility in the presence of noise. The results demonstrate that while the first method only requires a single set of load-response data, it is less accurate than the multiple-load method for most systems. Although the methods are able to reconstruct the original data sets accurately even for nonlinear systems, the results also demonstrate that a linear time-varying method cannot predict nonlinear phenomena that are not present in the original signals.
ISSN:1048-9002
1528-8927
DOI:10.1115/1.2890387