A Deconvolution-Based Approach to Structural Dynamics System Identification and Response Prediction
Two general linear time-varying system identification methods for multiple-input multiple-output systems are proposed based on the proper orthogonal decomposition (POD). The method applies the POD to express response data for linear or nonlinear systems as a modal sum of proper orthogonal modes and...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and acoustics 2008-06, Vol.130 (3), p.031010 (8)-031010 (8) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two general linear time-varying system identification methods for multiple-input multiple-output systems are proposed based on the proper orthogonal decomposition (POD). The method applies the POD to express response data for linear or nonlinear systems as a modal sum of proper orthogonal modes and proper orthogonal coordinates (POCs). Drawing upon mode summation theory, an analytical expression for the POCs is developed, and two deconvolution-based methods are devised for modifying them to predict the response of the system to new loads. The first method accomplishes the identification with a single-load-response data set, but its applicability is limited to lightly damped systems with a mass matrix proportional to the identity matrix. The second method uses multiple-load-response data sets to overcome these limitations. The methods are applied to construct predictive models for linear and nonlinear beam examples without using prior knowledge of a system model. The method is also applied to a linear experiment to demonstrate a potential experimental setup and the method’s feasibility in the presence of noise. The results demonstrate that while the first method only requires a single set of load-response data, it is less accurate than the multiple-load method for most systems. Although the methods are able to reconstruct the original data sets accurately even for nonlinear systems, the results also demonstrate that a linear time-varying method cannot predict nonlinear phenomena that are not present in the original signals. |
---|---|
ISSN: | 1048-9002 1528-8927 |
DOI: | 10.1115/1.2890387 |