Thermosensitive sol–gel reversible hydrogels

Aqueous polymer solutions that are transformed into gels by changes in environmental conditions, such as temperature and pH, thus resulting in in situ hydrogel formation, have recently attracted the attention of many investigators for scientific interest and for practical biomedical or pharmaceutica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced drug delivery reviews 2002-01, Vol.54 (1), p.37-51
Hauptverfasser: Jeong, Byeongmoon, Kim, Sung Wan, Bae, You Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 37
container_title Advanced drug delivery reviews
container_volume 54
creator Jeong, Byeongmoon
Kim, Sung Wan
Bae, You Han
description Aqueous polymer solutions that are transformed into gels by changes in environmental conditions, such as temperature and pH, thus resulting in in situ hydrogel formation, have recently attracted the attention of many investigators for scientific interest and for practical biomedical or pharmaceutical applications. When the hydrogel is formed under physiological conditions and maintains its integrity for a desired period of time, the process may provide various advantages over conventional hydrogels. Because of the simplicity of pharmaceutical formulation by solution mixing, biocompatibility with biological systems, and convenient administration, the pharmaceutical and biomedical uses of the water-based sol–gel transition include solubilization of low-molecular-weight hydrophobic drugs, controlled release, labile biomacromolecule delivery, such as proteins and genes, cell immobilization, and tissue engineering. When the formed gel is proven to be biocompatible and biodegradable, producing non-toxic degradation products, it will provide further benefits for in vivo applications where degradation is desired. It is timely to summarize the polymeric systems that undergo sol–gel transitions, particularly due to temperature, with emphasis on the underlying transition mechanisms and potential delivery aspects. This review stresses the polymeric systems of natural or modified natural polymers, N-isopropylacrylamide copolymers, poly(ethylene oxide)/poly(propylene oxide) block copolymers, and poly(ethylene glycol)/poly(d,l-lactide-co-glycolide) block copolymers.
doi_str_mv 10.1016/S0169-409X(01)00242-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33187193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169409X01002423</els_id><sourcerecordid>33187193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-3565256a747c9516a8c61de099226a70eb37737d68bd592bd1a66593c9b0ce003</originalsourceid><addsrcrecordid>eNqFkMlKA0EQQBtRTIx-gpKLooeJ1Xv6JBLcIODBCN6anp6KaZlkYncSyM1_8A_9EicL5uilCopX2yPklEKHAlXXL3UwmQDzdgn0CoAJlvE90qRdzbIuM2KfNP-QBjlK6QOAMq3gkDQo1VJqkE3SGYwwjquEkxRmYYHtVJU_X9_vWLYjLjCmkJfYHi2LWNW1dEwOhq5MeLLNLfJ6fzfoPWb954en3m0_80KLWcalkkwqp4X2RlLlul7RAsEYxuoqYM615rpQ3byQhuUFdUpJw73JwSMAb5GLzdxprD7nmGZ2HJLHsnQTrObJcl7_SQ2vQbkBfaxSiji00xjGLi4tBbsSZdei7MqCBWrXouyq72y7YJ6Psdh1bc3UwPkWcMm7chjdxIe047hgQorVoJsNV9vBRcBokw848ViEiH5miyr8c8ovSMCEpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33187193</pqid></control><display><type>article</type><title>Thermosensitive sol–gel reversible hydrogels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Jeong, Byeongmoon ; Kim, Sung Wan ; Bae, You Han</creator><creatorcontrib>Jeong, Byeongmoon ; Kim, Sung Wan ; Bae, You Han</creatorcontrib><description>Aqueous polymer solutions that are transformed into gels by changes in environmental conditions, such as temperature and pH, thus resulting in in situ hydrogel formation, have recently attracted the attention of many investigators for scientific interest and for practical biomedical or pharmaceutical applications. When the hydrogel is formed under physiological conditions and maintains its integrity for a desired period of time, the process may provide various advantages over conventional hydrogels. Because of the simplicity of pharmaceutical formulation by solution mixing, biocompatibility with biological systems, and convenient administration, the pharmaceutical and biomedical uses of the water-based sol–gel transition include solubilization of low-molecular-weight hydrophobic drugs, controlled release, labile biomacromolecule delivery, such as proteins and genes, cell immobilization, and tissue engineering. When the formed gel is proven to be biocompatible and biodegradable, producing non-toxic degradation products, it will provide further benefits for in vivo applications where degradation is desired. It is timely to summarize the polymeric systems that undergo sol–gel transitions, particularly due to temperature, with emphasis on the underlying transition mechanisms and potential delivery aspects. This review stresses the polymeric systems of natural or modified natural polymers, N-isopropylacrylamide copolymers, poly(ethylene oxide)/poly(propylene oxide) block copolymers, and poly(ethylene glycol)/poly(d,l-lactide-co-glycolide) block copolymers.</description><identifier>ISSN: 0169-409X</identifier><identifier>EISSN: 1872-8294</identifier><identifier>DOI: 10.1016/S0169-409X(01)00242-3</identifier><identifier>PMID: 11755705</identifier><language>eng</language><publisher>Shannon: Elsevier B.V</publisher><subject>Aqueous polymer solution ; Biological and medical sciences ; Drug delivery ; Drug Delivery Systems ; General pharmacology ; Hydrogels - chemistry ; Hydrogen-Ion Concentration ; In situ hydrogel formation ; Medical sciences ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Polymers - chemistry ; Sol–gel transition ; Temperature ; Tissue Engineering</subject><ispartof>Advanced drug delivery reviews, 2002-01, Vol.54 (1), p.37-51</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-3565256a747c9516a8c61de099226a70eb37737d68bd592bd1a66593c9b0ce003</citedby><cites>FETCH-LOGICAL-c474t-3565256a747c9516a8c61de099226a70eb37737d68bd592bd1a66593c9b0ce003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169409X01002423$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13424543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11755705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Byeongmoon</creatorcontrib><creatorcontrib>Kim, Sung Wan</creatorcontrib><creatorcontrib>Bae, You Han</creatorcontrib><title>Thermosensitive sol–gel reversible hydrogels</title><title>Advanced drug delivery reviews</title><addtitle>Adv Drug Deliv Rev</addtitle><description>Aqueous polymer solutions that are transformed into gels by changes in environmental conditions, such as temperature and pH, thus resulting in in situ hydrogel formation, have recently attracted the attention of many investigators for scientific interest and for practical biomedical or pharmaceutical applications. When the hydrogel is formed under physiological conditions and maintains its integrity for a desired period of time, the process may provide various advantages over conventional hydrogels. Because of the simplicity of pharmaceutical formulation by solution mixing, biocompatibility with biological systems, and convenient administration, the pharmaceutical and biomedical uses of the water-based sol–gel transition include solubilization of low-molecular-weight hydrophobic drugs, controlled release, labile biomacromolecule delivery, such as proteins and genes, cell immobilization, and tissue engineering. When the formed gel is proven to be biocompatible and biodegradable, producing non-toxic degradation products, it will provide further benefits for in vivo applications where degradation is desired. It is timely to summarize the polymeric systems that undergo sol–gel transitions, particularly due to temperature, with emphasis on the underlying transition mechanisms and potential delivery aspects. This review stresses the polymeric systems of natural or modified natural polymers, N-isopropylacrylamide copolymers, poly(ethylene oxide)/poly(propylene oxide) block copolymers, and poly(ethylene glycol)/poly(d,l-lactide-co-glycolide) block copolymers.</description><subject>Aqueous polymer solution</subject><subject>Biological and medical sciences</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>General pharmacology</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>In situ hydrogel formation</subject><subject>Medical sciences</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Polymers - chemistry</subject><subject>Sol–gel transition</subject><subject>Temperature</subject><subject>Tissue Engineering</subject><issn>0169-409X</issn><issn>1872-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlKA0EQQBtRTIx-gpKLooeJ1Xv6JBLcIODBCN6anp6KaZlkYncSyM1_8A_9EicL5uilCopX2yPklEKHAlXXL3UwmQDzdgn0CoAJlvE90qRdzbIuM2KfNP-QBjlK6QOAMq3gkDQo1VJqkE3SGYwwjquEkxRmYYHtVJU_X9_vWLYjLjCmkJfYHi2LWNW1dEwOhq5MeLLNLfJ6fzfoPWb954en3m0_80KLWcalkkwqp4X2RlLlul7RAsEYxuoqYM615rpQ3byQhuUFdUpJw73JwSMAb5GLzdxprD7nmGZ2HJLHsnQTrObJcl7_SQ2vQbkBfaxSiji00xjGLi4tBbsSZdei7MqCBWrXouyq72y7YJ6Psdh1bc3UwPkWcMm7chjdxIe047hgQorVoJsNV9vBRcBokw848ViEiH5miyr8c8ovSMCEpg</recordid><startdate>20020117</startdate><enddate>20020117</enddate><creator>Jeong, Byeongmoon</creator><creator>Kim, Sung Wan</creator><creator>Bae, You Han</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20020117</creationdate><title>Thermosensitive sol–gel reversible hydrogels</title><author>Jeong, Byeongmoon ; Kim, Sung Wan ; Bae, You Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-3565256a747c9516a8c61de099226a70eb37737d68bd592bd1a66593c9b0ce003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aqueous polymer solution</topic><topic>Biological and medical sciences</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>General pharmacology</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>In situ hydrogel formation</topic><topic>Medical sciences</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Polymers - chemistry</topic><topic>Sol–gel transition</topic><topic>Temperature</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Byeongmoon</creatorcontrib><creatorcontrib>Kim, Sung Wan</creatorcontrib><creatorcontrib>Bae, You Han</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced drug delivery reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Byeongmoon</au><au>Kim, Sung Wan</au><au>Bae, You Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermosensitive sol–gel reversible hydrogels</atitle><jtitle>Advanced drug delivery reviews</jtitle><addtitle>Adv Drug Deliv Rev</addtitle><date>2002-01-17</date><risdate>2002</risdate><volume>54</volume><issue>1</issue><spage>37</spage><epage>51</epage><pages>37-51</pages><issn>0169-409X</issn><eissn>1872-8294</eissn><abstract>Aqueous polymer solutions that are transformed into gels by changes in environmental conditions, such as temperature and pH, thus resulting in in situ hydrogel formation, have recently attracted the attention of many investigators for scientific interest and for practical biomedical or pharmaceutical applications. When the hydrogel is formed under physiological conditions and maintains its integrity for a desired period of time, the process may provide various advantages over conventional hydrogels. Because of the simplicity of pharmaceutical formulation by solution mixing, biocompatibility with biological systems, and convenient administration, the pharmaceutical and biomedical uses of the water-based sol–gel transition include solubilization of low-molecular-weight hydrophobic drugs, controlled release, labile biomacromolecule delivery, such as proteins and genes, cell immobilization, and tissue engineering. When the formed gel is proven to be biocompatible and biodegradable, producing non-toxic degradation products, it will provide further benefits for in vivo applications where degradation is desired. It is timely to summarize the polymeric systems that undergo sol–gel transitions, particularly due to temperature, with emphasis on the underlying transition mechanisms and potential delivery aspects. This review stresses the polymeric systems of natural or modified natural polymers, N-isopropylacrylamide copolymers, poly(ethylene oxide)/poly(propylene oxide) block copolymers, and poly(ethylene glycol)/poly(d,l-lactide-co-glycolide) block copolymers.</abstract><cop>Shannon</cop><pub>Elsevier B.V</pub><pmid>11755705</pmid><doi>10.1016/S0169-409X(01)00242-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-409X
ispartof Advanced drug delivery reviews, 2002-01, Vol.54 (1), p.37-51
issn 0169-409X
1872-8294
language eng
recordid cdi_proquest_miscellaneous_33187193
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Aqueous polymer solution
Biological and medical sciences
Drug delivery
Drug Delivery Systems
General pharmacology
Hydrogels - chemistry
Hydrogen-Ion Concentration
In situ hydrogel formation
Medical sciences
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Polymers - chemistry
Sol–gel transition
Temperature
Tissue Engineering
title Thermosensitive sol–gel reversible hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermosensitive%20sol%E2%80%93gel%20reversible%20hydrogels&rft.jtitle=Advanced%20drug%20delivery%20reviews&rft.au=Jeong,%20Byeongmoon&rft.date=2002-01-17&rft.volume=54&rft.issue=1&rft.spage=37&rft.epage=51&rft.pages=37-51&rft.issn=0169-409X&rft.eissn=1872-8294&rft_id=info:doi/10.1016/S0169-409X(01)00242-3&rft_dat=%3Cproquest_cross%3E33187193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33187193&rft_id=info:pmid/11755705&rft_els_id=S0169409X01002423&rfr_iscdi=true