Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials

This work reports the preparation of MFC–PVA composite films, and the thermal and mechanical properties of these films. Microfibrillated cellulose (MFC), which was separated from kraft pulp by a mechanical process, was used as the reinforcement in polyvinyl alcohol (PVA) matrix. This MFC reinforceme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2008-05, Vol.39 (5), p.738-746
Hauptverfasser: Lu, Jue, Wang, Tao, Drzal, Lawrence T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work reports the preparation of MFC–PVA composite films, and the thermal and mechanical properties of these films. Microfibrillated cellulose (MFC), which was separated from kraft pulp by a mechanical process, was used as the reinforcement in polyvinyl alcohol (PVA) matrix. This MFC reinforcement has an interconnected web-like structure with fibrils having a diameter in the range of 10–100nm, as observed by TEM. MFC–PVA composite films were created by casting from a water suspension to produce a homogeneous dispersion of MFC in the polymer matrix. DMA shows an increase of the storage modulus in the glassy state with increasing MFC content, but a more significant increase in modulus is detectable above the glass transition temperature. There is a steady increase in both the modulus and strength of the composite films until a plateau is reached at 10wt% MFC. The thermal stability of the PVA composite films is slightly increased with the addition of MFC. As a result of this research, it has been shown that MFC is an excellent reinforcement comparable to cellulose nanowhiskers. Furthermore, by combining MFC with PVA in addition to good mechanical properties, this composite has good chemical resistance and biodegradability. The water soluble characteristics of PVA combined with a water dispersion of MFC are also easily processable.
ISSN:1359-835X
1878-5840
DOI:10.1016/j.compositesa.2008.02.003