Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation

In this paper, two compact finite difference schemes are presented for the numerical solution of the one-dimensional nonlinear Schrödinger equation. The discrete L 2 -norm error estimates show that convergence rates of the present schemes are of order O ( h 4 + τ 2 ) . Numerical experiments on some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2009-02, Vol.198 (9), p.1052-1060
Hauptverfasser: Xie, Shu-Sen, Li, Guang-Xing, Yi, Sucheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, two compact finite difference schemes are presented for the numerical solution of the one-dimensional nonlinear Schrödinger equation. The discrete L 2 -norm error estimates show that convergence rates of the present schemes are of order O ( h 4 + τ 2 ) . Numerical experiments on some model problems show that the present schemes preserve the conservation laws of charge and energy and are of high accuracy.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2008.11.011