Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation
In this paper, two compact finite difference schemes are presented for the numerical solution of the one-dimensional nonlinear Schrödinger equation. The discrete L 2 -norm error estimates show that convergence rates of the present schemes are of order O ( h 4 + τ 2 ) . Numerical experiments on some...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2009-02, Vol.198 (9), p.1052-1060 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, two compact finite difference schemes are presented for the numerical solution of the one-dimensional nonlinear Schrödinger equation. The discrete
L
2
-norm error estimates show that convergence rates of the present schemes are of order
O
(
h
4
+
τ
2
)
. Numerical experiments on some model problems show that the present schemes preserve the conservation laws of charge and energy and are of high accuracy. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2008.11.011 |