B-spline collocation method for the singular-perturbation problem using artificial viscosity

In this paper, we develop a B-spline collocation method using artificial viscosity for solving singularly-perturbed equations given by ϵ u ″ ( x ) + a ( x ) u ′ ( x ) + b ( x ) u ( x ) = f ( x ) , a ( x ) ≥ a ∗ > 0 , b ( x ) ≥ b ∗ > 0 , (0.1) u ( 0 ) = α , u ( 1 ) = β . We use the artificial v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2009-02, Vol.57 (4), p.650-663
Hauptverfasser: Kadalbajoo, M.K., Arora, Puneet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop a B-spline collocation method using artificial viscosity for solving singularly-perturbed equations given by ϵ u ″ ( x ) + a ( x ) u ′ ( x ) + b ( x ) u ( x ) = f ( x ) , a ( x ) ≥ a ∗ > 0 , b ( x ) ≥ b ∗ > 0 , (0.1) u ( 0 ) = α , u ( 1 ) = β . We use the artificial viscosity to capture the exponential features of the exact solution on a uniform mesh and use B-spline collocation method which leads to a tridiagonal linear system. The convergence analysis is given and the method is shown to have uniform convergence of second order. The design of artificial viscosity parameter is confirmed to be a crucial ingredient for simulating the solution of the problem. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show the behaviour of the method with emphasis on treatment of boundary conditions. Results shown by the method are found to be in good agreement with the exact solution.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2008.09.008