In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering
Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasin...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2008-05, Vol.43 (10), p.3569-3576 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3576 |
---|---|
container_issue | 10 |
container_start_page | 3569 |
container_title | Journal of materials science |
container_volume | 43 |
creator | Dudina, Dina V. Hulbert, Dustin M. Jiang, Dongtao Unuvar, Cosan Cytron, Sheldon J. Mukherjee, Amiya K. |
description | Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively. |
doi_str_mv | 10.1007/s10853-008-2563-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33069409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33069409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-977d2bee18cf4fcb5560403f9323899dd81f5862a181a93810a0e780501a2a6e3</originalsourceid><addsrcrecordid>eNp9kcFqFTEUhoNY8Nr6AO4CpeJm9CSZZJKllKqFQgtt1yGTOaNpZzLTZGZxd32HvqFPYq63KAi6CiTf-Tj5f0LeMvjAAJqPmYGWogLQFZdKVPoF2TDZiKrWIF6SDQDnFa8Ve0Ve53wHALLhbEO255HmsKy0ndIUqXepDR3-eHxawuJiWEfahfJU7qifxnkqLGY6J5xdwo62Wzqi_15I7wY6hmEI8Rt1saN5bTM-rBgXel3Ye3o1uDw6eh3igqlQR-Sgd0PGN8_nIbn9fHZz-rW6uPxyfvrpovJ1o5bKNE3HW0SmfV_3vpVSQQ2iN4ILbUzXadZLrbhjmjkjNAMH2GiQwBx3CsUhebf3zmkq--TFjiF7HAYXcVqzFQKUqcEU8P1_wZIwZ0bpWhb0-C_0blpTLN-wnEujat38ErI95dOUc8LezimMLm2Lyu5as_vWbGnN7lqzusycPJtdLpH2yUUf8u9BDoJrLXZuvufyvAsT058N_i3_CZdFqFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259648709</pqid></control><display><type>article</type><title>In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering</title><source>SpringerLink Journals</source><creator>Dudina, Dina V. ; Hulbert, Dustin M. ; Jiang, Dongtao ; Unuvar, Cosan ; Cytron, Sheldon J. ; Mukherjee, Amiya K.</creator><creatorcontrib>Dudina, Dina V. ; Hulbert, Dustin M. ; Jiang, Dongtao ; Unuvar, Cosan ; Cytron, Sheldon J. ; Mukherjee, Amiya K.</creatorcontrib><description>Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-008-2563-8</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abrasives and cutting tools ; Applied sciences ; Armor ; Boron ; Boron carbide ; Building materials. Ceramics. Glasses ; Bulk density ; Ceramic industries ; Cermets, ceramic and refractory composites ; Characterization and Evaluation of Materials ; Chemical industry and chemicals ; Classical Mechanics ; Composite materials ; Cross-disciplinary physics: materials science; rheology ; Crystallography and Scattering Methods ; Density ; Exact sciences and technology ; Fracture toughness ; Grain size ; Materials Science ; Mechanical milling ; Microstructure ; Other materials ; Particulate composites ; Physics ; Plasma sintering ; Polymer Sciences ; Sintering (powder metallurgy) ; Solid Mechanics ; Spark plasma sintering ; Specific materials ; Technical ceramics ; Titanium ; Titanium diboride</subject><ispartof>Journal of materials science, 2008-05, Vol.43 (10), p.3569-3576</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-977d2bee18cf4fcb5560403f9323899dd81f5862a181a93810a0e780501a2a6e3</citedby><cites>FETCH-LOGICAL-c476t-977d2bee18cf4fcb5560403f9323899dd81f5862a181a93810a0e780501a2a6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-008-2563-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-008-2563-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20328839$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dudina, Dina V.</creatorcontrib><creatorcontrib>Hulbert, Dustin M.</creatorcontrib><creatorcontrib>Jiang, Dongtao</creatorcontrib><creatorcontrib>Unuvar, Cosan</creatorcontrib><creatorcontrib>Cytron, Sheldon J.</creatorcontrib><creatorcontrib>Mukherjee, Amiya K.</creatorcontrib><title>In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.</description><subject>Abrasives and cutting tools</subject><subject>Applied sciences</subject><subject>Armor</subject><subject>Boron</subject><subject>Boron carbide</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Bulk density</subject><subject>Ceramic industries</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry and chemicals</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallography and Scattering Methods</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Fracture toughness</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Mechanical milling</subject><subject>Microstructure</subject><subject>Other materials</subject><subject>Particulate composites</subject><subject>Physics</subject><subject>Plasma sintering</subject><subject>Polymer Sciences</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid Mechanics</subject><subject>Spark plasma sintering</subject><subject>Specific materials</subject><subject>Technical ceramics</subject><subject>Titanium</subject><subject>Titanium diboride</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kcFqFTEUhoNY8Nr6AO4CpeJm9CSZZJKllKqFQgtt1yGTOaNpZzLTZGZxd32HvqFPYq63KAi6CiTf-Tj5f0LeMvjAAJqPmYGWogLQFZdKVPoF2TDZiKrWIF6SDQDnFa8Ve0Ve53wHALLhbEO255HmsKy0ndIUqXepDR3-eHxawuJiWEfahfJU7qifxnkqLGY6J5xdwo62Wzqi_15I7wY6hmEI8Rt1saN5bTM-rBgXel3Ye3o1uDw6eh3igqlQR-Sgd0PGN8_nIbn9fHZz-rW6uPxyfvrpovJ1o5bKNE3HW0SmfV_3vpVSQQ2iN4ILbUzXadZLrbhjmjkjNAMH2GiQwBx3CsUhebf3zmkq--TFjiF7HAYXcVqzFQKUqcEU8P1_wZIwZ0bpWhb0-C_0blpTLN-wnEujat38ErI95dOUc8LezimMLm2Lyu5as_vWbGnN7lqzusycPJtdLpH2yUUf8u9BDoJrLXZuvufyvAsT058N_i3_CZdFqFo</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Dudina, Dina V.</creator><creator>Hulbert, Dustin M.</creator><creator>Jiang, Dongtao</creator><creator>Unuvar, Cosan</creator><creator>Cytron, Sheldon J.</creator><creator>Mukherjee, Amiya K.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080501</creationdate><title>In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering</title><author>Dudina, Dina V. ; Hulbert, Dustin M. ; Jiang, Dongtao ; Unuvar, Cosan ; Cytron, Sheldon J. ; Mukherjee, Amiya K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-977d2bee18cf4fcb5560403f9323899dd81f5862a181a93810a0e780501a2a6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Abrasives and cutting tools</topic><topic>Applied sciences</topic><topic>Armor</topic><topic>Boron</topic><topic>Boron carbide</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Bulk density</topic><topic>Ceramic industries</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry and chemicals</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallography and Scattering Methods</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Fracture toughness</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Mechanical milling</topic><topic>Microstructure</topic><topic>Other materials</topic><topic>Particulate composites</topic><topic>Physics</topic><topic>Plasma sintering</topic><topic>Polymer Sciences</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid Mechanics</topic><topic>Spark plasma sintering</topic><topic>Specific materials</topic><topic>Technical ceramics</topic><topic>Titanium</topic><topic>Titanium diboride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudina, Dina V.</creatorcontrib><creatorcontrib>Hulbert, Dustin M.</creatorcontrib><creatorcontrib>Jiang, Dongtao</creatorcontrib><creatorcontrib>Unuvar, Cosan</creatorcontrib><creatorcontrib>Cytron, Sheldon J.</creatorcontrib><creatorcontrib>Mukherjee, Amiya K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudina, Dina V.</au><au>Hulbert, Dustin M.</au><au>Jiang, Dongtao</au><au>Unuvar, Cosan</au><au>Cytron, Sheldon J.</au><au>Mukherjee, Amiya K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>43</volume><issue>10</issue><spage>3569</spage><epage>3576</epage><pages>3569-3576</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-008-2563-8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2008-05, Vol.43 (10), p.3569-3576 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_33069409 |
source | SpringerLink Journals |
subjects | Abrasives and cutting tools Applied sciences Armor Boron Boron carbide Building materials. Ceramics. Glasses Bulk density Ceramic industries Cermets, ceramic and refractory composites Characterization and Evaluation of Materials Chemical industry and chemicals Classical Mechanics Composite materials Cross-disciplinary physics: materials science rheology Crystallography and Scattering Methods Density Exact sciences and technology Fracture toughness Grain size Materials Science Mechanical milling Microstructure Other materials Particulate composites Physics Plasma sintering Polymer Sciences Sintering (powder metallurgy) Solid Mechanics Spark plasma sintering Specific materials Technical ceramics Titanium Titanium diboride |
title | In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20boron%20carbide%E2%80%93titanium%20diboride%20composites%20prepared%20by%20mechanical%20milling%20and%20subsequent%20Spark%20Plasma%20Sintering&rft.jtitle=Journal%20of%20materials%20science&rft.au=Dudina,%20Dina%20V.&rft.date=2008-05-01&rft.volume=43&rft.issue=10&rft.spage=3569&rft.epage=3576&rft.pages=3569-3576&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-008-2563-8&rft_dat=%3Cproquest_cross%3E33069409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259648709&rft_id=info:pmid/&rfr_iscdi=true |