In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering

Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2008-05, Vol.43 (10), p.3569-3576
Hauptverfasser: Dudina, Dina V., Hulbert, Dustin M., Jiang, Dongtao, Unuvar, Cosan, Cytron, Sheldon J., Mukherjee, Amiya K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3576
container_issue 10
container_start_page 3569
container_title Journal of materials science
container_volume 43
creator Dudina, Dina V.
Hulbert, Dustin M.
Jiang, Dongtao
Unuvar, Cosan
Cytron, Sheldon J.
Mukherjee, Amiya K.
description Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.
doi_str_mv 10.1007/s10853-008-2563-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33069409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33069409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-977d2bee18cf4fcb5560403f9323899dd81f5862a181a93810a0e780501a2a6e3</originalsourceid><addsrcrecordid>eNp9kcFqFTEUhoNY8Nr6AO4CpeJm9CSZZJKllKqFQgtt1yGTOaNpZzLTZGZxd32HvqFPYq63KAi6CiTf-Tj5f0LeMvjAAJqPmYGWogLQFZdKVPoF2TDZiKrWIF6SDQDnFa8Ve0Ve53wHALLhbEO255HmsKy0ndIUqXepDR3-eHxawuJiWEfahfJU7qifxnkqLGY6J5xdwo62Wzqi_15I7wY6hmEI8Rt1saN5bTM-rBgXel3Ye3o1uDw6eh3igqlQR-Sgd0PGN8_nIbn9fHZz-rW6uPxyfvrpovJ1o5bKNE3HW0SmfV_3vpVSQQ2iN4ILbUzXadZLrbhjmjkjNAMH2GiQwBx3CsUhebf3zmkq--TFjiF7HAYXcVqzFQKUqcEU8P1_wZIwZ0bpWhb0-C_0blpTLN-wnEujat38ErI95dOUc8LezimMLm2Lyu5as_vWbGnN7lqzusycPJtdLpH2yUUf8u9BDoJrLXZuvufyvAsT058N_i3_CZdFqFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259648709</pqid></control><display><type>article</type><title>In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering</title><source>SpringerLink Journals</source><creator>Dudina, Dina V. ; Hulbert, Dustin M. ; Jiang, Dongtao ; Unuvar, Cosan ; Cytron, Sheldon J. ; Mukherjee, Amiya K.</creator><creatorcontrib>Dudina, Dina V. ; Hulbert, Dustin M. ; Jiang, Dongtao ; Unuvar, Cosan ; Cytron, Sheldon J. ; Mukherjee, Amiya K.</creatorcontrib><description>Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-008-2563-8</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abrasives and cutting tools ; Applied sciences ; Armor ; Boron ; Boron carbide ; Building materials. Ceramics. Glasses ; Bulk density ; Ceramic industries ; Cermets, ceramic and refractory composites ; Characterization and Evaluation of Materials ; Chemical industry and chemicals ; Classical Mechanics ; Composite materials ; Cross-disciplinary physics: materials science; rheology ; Crystallography and Scattering Methods ; Density ; Exact sciences and technology ; Fracture toughness ; Grain size ; Materials Science ; Mechanical milling ; Microstructure ; Other materials ; Particulate composites ; Physics ; Plasma sintering ; Polymer Sciences ; Sintering (powder metallurgy) ; Solid Mechanics ; Spark plasma sintering ; Specific materials ; Technical ceramics ; Titanium ; Titanium diboride</subject><ispartof>Journal of materials science, 2008-05, Vol.43 (10), p.3569-3576</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-977d2bee18cf4fcb5560403f9323899dd81f5862a181a93810a0e780501a2a6e3</citedby><cites>FETCH-LOGICAL-c476t-977d2bee18cf4fcb5560403f9323899dd81f5862a181a93810a0e780501a2a6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-008-2563-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-008-2563-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20328839$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dudina, Dina V.</creatorcontrib><creatorcontrib>Hulbert, Dustin M.</creatorcontrib><creatorcontrib>Jiang, Dongtao</creatorcontrib><creatorcontrib>Unuvar, Cosan</creatorcontrib><creatorcontrib>Cytron, Sheldon J.</creatorcontrib><creatorcontrib>Mukherjee, Amiya K.</creatorcontrib><title>In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.</description><subject>Abrasives and cutting tools</subject><subject>Applied sciences</subject><subject>Armor</subject><subject>Boron</subject><subject>Boron carbide</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Bulk density</subject><subject>Ceramic industries</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry and chemicals</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallography and Scattering Methods</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Fracture toughness</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Mechanical milling</subject><subject>Microstructure</subject><subject>Other materials</subject><subject>Particulate composites</subject><subject>Physics</subject><subject>Plasma sintering</subject><subject>Polymer Sciences</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid Mechanics</subject><subject>Spark plasma sintering</subject><subject>Specific materials</subject><subject>Technical ceramics</subject><subject>Titanium</subject><subject>Titanium diboride</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kcFqFTEUhoNY8Nr6AO4CpeJm9CSZZJKllKqFQgtt1yGTOaNpZzLTZGZxd32HvqFPYq63KAi6CiTf-Tj5f0LeMvjAAJqPmYGWogLQFZdKVPoF2TDZiKrWIF6SDQDnFa8Ve0Ve53wHALLhbEO255HmsKy0ndIUqXepDR3-eHxawuJiWEfahfJU7qifxnkqLGY6J5xdwo62Wzqi_15I7wY6hmEI8Rt1saN5bTM-rBgXel3Ye3o1uDw6eh3igqlQR-Sgd0PGN8_nIbn9fHZz-rW6uPxyfvrpovJ1o5bKNE3HW0SmfV_3vpVSQQ2iN4ILbUzXadZLrbhjmjkjNAMH2GiQwBx3CsUhebf3zmkq--TFjiF7HAYXcVqzFQKUqcEU8P1_wZIwZ0bpWhb0-C_0blpTLN-wnEujat38ErI95dOUc8LezimMLm2Lyu5as_vWbGnN7lqzusycPJtdLpH2yUUf8u9BDoJrLXZuvufyvAsT058N_i3_CZdFqFo</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Dudina, Dina V.</creator><creator>Hulbert, Dustin M.</creator><creator>Jiang, Dongtao</creator><creator>Unuvar, Cosan</creator><creator>Cytron, Sheldon J.</creator><creator>Mukherjee, Amiya K.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080501</creationdate><title>In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering</title><author>Dudina, Dina V. ; Hulbert, Dustin M. ; Jiang, Dongtao ; Unuvar, Cosan ; Cytron, Sheldon J. ; Mukherjee, Amiya K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-977d2bee18cf4fcb5560403f9323899dd81f5862a181a93810a0e780501a2a6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Abrasives and cutting tools</topic><topic>Applied sciences</topic><topic>Armor</topic><topic>Boron</topic><topic>Boron carbide</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Bulk density</topic><topic>Ceramic industries</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry and chemicals</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallography and Scattering Methods</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Fracture toughness</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Mechanical milling</topic><topic>Microstructure</topic><topic>Other materials</topic><topic>Particulate composites</topic><topic>Physics</topic><topic>Plasma sintering</topic><topic>Polymer Sciences</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid Mechanics</topic><topic>Spark plasma sintering</topic><topic>Specific materials</topic><topic>Technical ceramics</topic><topic>Titanium</topic><topic>Titanium diboride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudina, Dina V.</creatorcontrib><creatorcontrib>Hulbert, Dustin M.</creatorcontrib><creatorcontrib>Jiang, Dongtao</creatorcontrib><creatorcontrib>Unuvar, Cosan</creatorcontrib><creatorcontrib>Cytron, Sheldon J.</creatorcontrib><creatorcontrib>Mukherjee, Amiya K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudina, Dina V.</au><au>Hulbert, Dustin M.</au><au>Jiang, Dongtao</au><au>Unuvar, Cosan</au><au>Cytron, Sheldon J.</au><au>Mukherjee, Amiya K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>43</volume><issue>10</issue><spage>3569</spage><epage>3576</epage><pages>3569-3576</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-008-2563-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2008-05, Vol.43 (10), p.3569-3576
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_33069409
source SpringerLink Journals
subjects Abrasives and cutting tools
Applied sciences
Armor
Boron
Boron carbide
Building materials. Ceramics. Glasses
Bulk density
Ceramic industries
Cermets, ceramic and refractory composites
Characterization and Evaluation of Materials
Chemical industry and chemicals
Classical Mechanics
Composite materials
Cross-disciplinary physics: materials science
rheology
Crystallography and Scattering Methods
Density
Exact sciences and technology
Fracture toughness
Grain size
Materials Science
Mechanical milling
Microstructure
Other materials
Particulate composites
Physics
Plasma sintering
Polymer Sciences
Sintering (powder metallurgy)
Solid Mechanics
Spark plasma sintering
Specific materials
Technical ceramics
Titanium
Titanium diboride
title In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20boron%20carbide%E2%80%93titanium%20diboride%20composites%20prepared%20by%20mechanical%20milling%20and%20subsequent%20Spark%20Plasma%20Sintering&rft.jtitle=Journal%20of%20materials%20science&rft.au=Dudina,%20Dina%20V.&rft.date=2008-05-01&rft.volume=43&rft.issue=10&rft.spage=3569&rft.epage=3576&rft.pages=3569-3576&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-008-2563-8&rft_dat=%3Cproquest_cross%3E33069409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259648709&rft_id=info:pmid/&rfr_iscdi=true