In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sintering

Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2008-05, Vol.43 (10), p.3569-3576
Hauptverfasser: Dudina, Dina V., Hulbert, Dustin M., Jiang, Dongtao, Unuvar, Cosan, Cytron, Sheldon J., Mukherjee, Amiya K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boron carbide–titanium diboride composites were synthesized and consolidated by Spark Plasma Sintering (SPS) of mechanically milled elemental powder mixtures. The phase and microstructure evolution of the composites during sintering in the 1,200–1,700 °C temperature range was studied. With increasing sintering temperature, the phase formation of the samples was completed well before full density was achieved. The distribution of titanium diboride in the sintered samples was significantly improved with increasing milling time of the Ti–B–C powder mixtures. A bulk composite material of nearly full density, fine uniform microstructure, and increased fracture toughness was obtained by SPS at 1,700 °C. The grain size of boron carbide and titanium diboride in this material was 5–7 and 1–2 μm, respectively.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-008-2563-8