A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations

As a first endeavor, a mixed differential quadrature (DQ) and finite element (FE) method for boundary value structural problems in the context of free vibration and buckling analysis of thick beams supported on two-parameter elastic foundations is presented. The formulations are based on the two-dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2008-07, Vol.32 (7), p.1381-1394
Hauptverfasser: Malekzadeh, P., Karami, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a first endeavor, a mixed differential quadrature (DQ) and finite element (FE) method for boundary value structural problems in the context of free vibration and buckling analysis of thick beams supported on two-parameter elastic foundations is presented. The formulations are based on the two-dimensional theory of elasticity. The problem domain along axial direction is discretized using finite elements. The resulting system of equations and the related boundary conditions are discretized in the thickness direction and in strong-form using DQM. The method benefits from low computational efforts of the DQ in conjunction with the effectiveness of the FE method in general geometry and systematic boundary treatment resulting in highly accurate and fast convergence behavior solution. The boundary conditions at the top and bottom surface of the beams are implemented accurately. The presented formulations provide an effective analysis tool for beams free of shear locking. Comparisons are made with results from elasticity solutions as well as higher-order beam theory.
ISSN:0307-904X
DOI:10.1016/j.apm.2007.04.019