Magnitude Versus Frequency Performance of Vibration Acceleration Sensor Based on Cymbal Transducer

The magnitude versus frequency performance for a vibration acceleration sensor based on metal-ceramic piezocomposite transducer (cymbal) was studied in this paper. The results showed that the voltage sensitivity of this new sensor is as a function of not only the effective piezoelectric coefficient,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2008-01, Vol.368-372, p.226-229
Hauptverfasser: Ma, Yong Cheng, Gao, Jing Min, Li, Deng Hua, Yang, Shu Hui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The magnitude versus frequency performance for a vibration acceleration sensor based on metal-ceramic piezocomposite transducer (cymbal) was studied in this paper. The results showed that the voltage sensitivity of this new sensor is as a function of not only the effective piezoelectric coefficient, d33 e, elastic coefficient, ky, and the resonance frequency, f0, of the cymbal transducer, but also the relative damping coefficient, ξ, of this new sensor. The relative damping coefficient, ξ, is also as a function of the capacitance, C0, of the cymbal transducer and a function of the mass, m, of the sensor, which is used as a prestressing force. The magnitude versus frequency plot for this vibration acceleration sensor was constructed. The results showed that the magnitude versus frequency performance of this new sensor changes as the relative damping coefficient, ξ, varies. The magnitude versus frequency performance is not dependent on the relative damping coefficient, ξ, when the ratio of operation frequency to the nature frequency, ω /ω0, is less than 0.2.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.368-372.226