Strong convergence theorems by a new hybrid projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings
The purpose of this paper is to introduce a new hybrid projection algorithm for finding a common element of the set of common fixed points of two relatively quasi-nonexpansive mappings and the set of solutions of an equilibrium problem in the framework of Banach spaces. Our results improve and exten...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis. Hybrid systems 2009-02, Vol.3 (1), p.11-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this paper is to introduce a new hybrid projection algorithm for finding a common element of the set of common fixed points of two relatively quasi-nonexpansive mappings and the set of solutions of an equilibrium problem in the framework of Banach spaces. Our results improve and extend the corresponding results announced by Takahashi and Zembayashi [W. Takahashi, K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal. (2008),
doi:10.1016/j.na.2007.11.031], Takahashi and Zembayashi [W. Takahashi, K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008),
doi:10.1155/2008/528476], Qin et al. [X. Qin, Y.J. Cho, S.M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. (2008),
doi:10.1016/j.cam.2008.06.011], Plubtieng and Ungchittrakool [S. Plubtieng, K. Ungchittrakool, Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space, J. Approx. Theory 149 (2007) 103–115]. |
---|---|
ISSN: | 1751-570X |
DOI: | 10.1016/j.nahs.2008.10.002 |