Homogenization and Pseudoelastic Behavior of Composite Materials Reinforced with Shape Memory Alloy Fibers
Pseudoelastic behavior of cylindrical shape memory alloy (SMA) fiber embedded in a polymer matrix is investigated by using micromechanic approaches. A homogenization scheme based on Eshelby's equivalent inclusion method is adopted to derive the expressions for strains in the fiber and matrix in...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2008-09, Vol.42 (17), p.1685-1707 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1707 |
---|---|
container_issue | 17 |
container_start_page | 1685 |
container_title | Journal of composite materials |
container_volume | 42 |
creator | Jarali, Chetan S. Raja, S. |
description | Pseudoelastic behavior of cylindrical shape memory alloy (SMA) fiber embedded in a polymer matrix is investigated by using micromechanic approaches. A homogenization scheme based on Eshelby's equivalent inclusion method is adopted to derive the expressions for strains in the fiber and matrix in terms of the average strain in the composite. The constitutive laws for the SMA fiber and matrix are also expressed in terms of the average strain in the composite. The expressions for the SMA composite stiffness and the inelastic strains tensors are derived using dilute distribution theory and rule of mixtures approach. The composite stiffness and inelastic strain tensors are used in the generalized Hooke's law to compute the transformation stresses and associated hysteresis of the SMA composite. A comparison is also made with the strain energy approach. The computational results in terms of the composite stiffness and the stresses are presented within different fiber volume fraction, using the proposed methods. Finally, the modifications in the modeling approaches are highlighted with analytical case studies involving hysteretic stress—strain behaviors. |
doi_str_mv | 10.1177/0021998308092201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32918961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0021998308092201</sage_id><sourcerecordid>32918961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-be95814e28a38336a98b3c534ecf18270605f780f7eb22a43c49440ede4c31e33</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqWwM3qBLXD9SGKPpaIUqQjEQ2KLXPemdZXExU5B5deTqhUDEtMdzvcd6R5CzhlcMZbn1wCcaa0EKNCcAzsgPZYKSHIt3g9Jbxsn2_yYnMS4BICcyaxHlmNf-zk27tu0zjfUNDP6FHE981iZ2DpLb3BhPp0P1Jd06OuVj65F-mBaDM5UkT6ja0ofLM7ol2sX9GVhVl2OtQ8bOqgqv6EjN8UQT8lR2Ql4tr998ja6fR2Ok8nj3f1wMEmskLxNpqhTxSRyZYQSIjNaTYVNhURbMsVzyCAtcwVljlPOjRRWaikBZyitYChEn1zuelfBf6wxtkXtosWqMg36dSwE10zpjHUg7EAbfIwBy2IVXG3CpmBQbEct_o7aKRf7bhOtqcpgGuvir8ch4ynP0o5Ldlw0cyyWfh2a7uX_e38ALq-ECQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32918961</pqid></control><display><type>article</type><title>Homogenization and Pseudoelastic Behavior of Composite Materials Reinforced with Shape Memory Alloy Fibers</title><source>SAGE Complete</source><creator>Jarali, Chetan S. ; Raja, S.</creator><creatorcontrib>Jarali, Chetan S. ; Raja, S.</creatorcontrib><description>Pseudoelastic behavior of cylindrical shape memory alloy (SMA) fiber embedded in a polymer matrix is investigated by using micromechanic approaches. A homogenization scheme based on Eshelby's equivalent inclusion method is adopted to derive the expressions for strains in the fiber and matrix in terms of the average strain in the composite. The constitutive laws for the SMA fiber and matrix are also expressed in terms of the average strain in the composite. The expressions for the SMA composite stiffness and the inelastic strains tensors are derived using dilute distribution theory and rule of mixtures approach. The composite stiffness and inelastic strain tensors are used in the generalized Hooke's law to compute the transformation stresses and associated hysteresis of the SMA composite. A comparison is also made with the strain energy approach. The computational results in terms of the composite stiffness and the stresses are presented within different fiber volume fraction, using the proposed methods. Finally, the modifications in the modeling approaches are highlighted with analytical case studies involving hysteretic stress—strain behaviors.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/0021998308092201</identifier><identifier>CODEN: JCOMBI</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Applied sciences ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Physics ; Polymer industry, paints, wood ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Technology of polymers</subject><ispartof>Journal of composite materials, 2008-09, Vol.42 (17), p.1685-1707</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-be95814e28a38336a98b3c534ecf18270605f780f7eb22a43c49440ede4c31e33</citedby><cites>FETCH-LOGICAL-c342t-be95814e28a38336a98b3c534ecf18270605f780f7eb22a43c49440ede4c31e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0021998308092201$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0021998308092201$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20625265$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jarali, Chetan S.</creatorcontrib><creatorcontrib>Raja, S.</creatorcontrib><title>Homogenization and Pseudoelastic Behavior of Composite Materials Reinforced with Shape Memory Alloy Fibers</title><title>Journal of composite materials</title><description>Pseudoelastic behavior of cylindrical shape memory alloy (SMA) fiber embedded in a polymer matrix is investigated by using micromechanic approaches. A homogenization scheme based on Eshelby's equivalent inclusion method is adopted to derive the expressions for strains in the fiber and matrix in terms of the average strain in the composite. The constitutive laws for the SMA fiber and matrix are also expressed in terms of the average strain in the composite. The expressions for the SMA composite stiffness and the inelastic strains tensors are derived using dilute distribution theory and rule of mixtures approach. The composite stiffness and inelastic strain tensors are used in the generalized Hooke's law to compute the transformation stresses and associated hysteresis of the SMA composite. A comparison is also made with the strain energy approach. The computational results in terms of the composite stiffness and the stresses are presented within different fiber volume fraction, using the proposed methods. Finally, the modifications in the modeling approaches are highlighted with analytical case studies involving hysteretic stress—strain behaviors.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqWwM3qBLXD9SGKPpaIUqQjEQ2KLXPemdZXExU5B5deTqhUDEtMdzvcd6R5CzhlcMZbn1wCcaa0EKNCcAzsgPZYKSHIt3g9Jbxsn2_yYnMS4BICcyaxHlmNf-zk27tu0zjfUNDP6FHE981iZ2DpLb3BhPp0P1Jd06OuVj65F-mBaDM5UkT6ja0ofLM7ol2sX9GVhVl2OtQ8bOqgqv6EjN8UQT8lR2Ql4tr998ja6fR2Ok8nj3f1wMEmskLxNpqhTxSRyZYQSIjNaTYVNhURbMsVzyCAtcwVljlPOjRRWaikBZyitYChEn1zuelfBf6wxtkXtosWqMg36dSwE10zpjHUg7EAbfIwBy2IVXG3CpmBQbEct_o7aKRf7bhOtqcpgGuvir8ch4ynP0o5Ldlw0cyyWfh2a7uX_e38ALq-ECQ</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Jarali, Chetan S.</creator><creator>Raja, S.</creator><general>SAGE Publications</general><general>Technomic</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080901</creationdate><title>Homogenization and Pseudoelastic Behavior of Composite Materials Reinforced with Shape Memory Alloy Fibers</title><author>Jarali, Chetan S. ; Raja, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-be95814e28a38336a98b3c534ecf18270605f780f7eb22a43c49440ede4c31e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarali, Chetan S.</creatorcontrib><creatorcontrib>Raja, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarali, Chetan S.</au><au>Raja, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogenization and Pseudoelastic Behavior of Composite Materials Reinforced with Shape Memory Alloy Fibers</atitle><jtitle>Journal of composite materials</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>42</volume><issue>17</issue><spage>1685</spage><epage>1707</epage><pages>1685-1707</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><coden>JCOMBI</coden><abstract>Pseudoelastic behavior of cylindrical shape memory alloy (SMA) fiber embedded in a polymer matrix is investigated by using micromechanic approaches. A homogenization scheme based on Eshelby's equivalent inclusion method is adopted to derive the expressions for strains in the fiber and matrix in terms of the average strain in the composite. The constitutive laws for the SMA fiber and matrix are also expressed in terms of the average strain in the composite. The expressions for the SMA composite stiffness and the inelastic strains tensors are derived using dilute distribution theory and rule of mixtures approach. The composite stiffness and inelastic strain tensors are used in the generalized Hooke's law to compute the transformation stresses and associated hysteresis of the SMA composite. A comparison is also made with the strain energy approach. The computational results in terms of the composite stiffness and the stresses are presented within different fiber volume fraction, using the proposed methods. Finally, the modifications in the modeling approaches are highlighted with analytical case studies involving hysteretic stress—strain behaviors.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0021998308092201</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9983 |
ispartof | Journal of composite materials, 2008-09, Vol.42 (17), p.1685-1707 |
issn | 0021-9983 1530-793X |
language | eng |
recordid | cdi_proquest_miscellaneous_32918961 |
source | SAGE Complete |
subjects | Applied sciences Composites Exact sciences and technology Forms of application and semi-finished materials Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Physics Polymer industry, paints, wood Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics Technology of polymers |
title | Homogenization and Pseudoelastic Behavior of Composite Materials Reinforced with Shape Memory Alloy Fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogenization%20and%20Pseudoelastic%20Behavior%20of%20Composite%20Materials%20Reinforced%20with%20Shape%20Memory%20Alloy%20Fibers&rft.jtitle=Journal%20of%20composite%20materials&rft.au=Jarali,%20Chetan%20S.&rft.date=2008-09-01&rft.volume=42&rft.issue=17&rft.spage=1685&rft.epage=1707&rft.pages=1685-1707&rft.issn=0021-9983&rft.eissn=1530-793X&rft.coden=JCOMBI&rft_id=info:doi/10.1177/0021998308092201&rft_dat=%3Cproquest_cross%3E32918961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32918961&rft_id=info:pmid/&rft_sage_id=10.1177_0021998308092201&rfr_iscdi=true |