Flow-stress coupled permeability tensor for fractured rock masses
In this paper a new analytical model is proposed to determine the permeability tensor for fractured rock masses based on the superposition principle of liquid dissipation energy. This model relies on the geometrical characteristics of rock fractures and the corresponding fracture network, and demons...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2008-08, Vol.32 (11), p.1289-1309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a new analytical model is proposed to determine the permeability tensor for fractured rock masses based on the superposition principle of liquid dissipation energy. This model relies on the geometrical characteristics of rock fractures and the corresponding fracture network, and demonstrates the coupling effect between fluid flow and stress/deformation. This model empirically considers the effect of pre‐peak shear dilation and shear contraction on the hydraulic behavior of rock fractures and can be used to determine the applicability of the continuum approach to hydro‐mechanical coupling analysis. Results of numerical analysis presented in this paper show that the new model can effectively describe the permeability of fractured rock masses, and can be applied to the coupling analysis of seepage and stress fields. Copyright © 2008 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0363-9061 1096-9853 |
DOI: | 10.1002/nag.668 |