Adsorption and deposition of anthraquinone-2-carboxylic acid on alumina studied by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy

The adsorption state of anthraquinone-2-carboxylic acid (AQ-2-COOH) deposited from acetone solutions (0.01–1.00 mg/ml) on native oxide surfaces of Al films was characterized by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2008-04, Vol.254 (13), p.3829-3838
Hauptverfasser: Higo, Morihide, Miake, Takeshi, Mitsushio, Masaru, Yoshidome, Toshifumi, Ozono, Yoshihisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adsorption state of anthraquinone-2-carboxylic acid (AQ-2-COOH) deposited from acetone solutions (0.01–1.00 mg/ml) on native oxide surfaces of Al films was characterized by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy. The oxide was prepared on evaporated Al films at room temperature in an oxygen-dc glow discharge. The morphology of the deposited AQ-2-COOH on the oxide surfaces was observed and analyzed by atomic force microscopy. These surface analyses showed that AQ-2-COOH is adsorbed predominantly as a uniform nanometer-scale film of carboxylate anions on the oxide surfaces deposited from solutions with concentrations lower than or equal to 0.02 mg/ml. It was found that AQ-2-COOH is adsorbed as both a uniform film of anions and as micron-sized particles of neutral molecules with heights of a few tens of nanometers when AQ-2-COOH is deposited from solutions with concentrations higher than 0.02 mg/ml. A comparison of the results obtained by these surface analytical techniques clearly shows the features and advantages of these analytical techniques.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2007.12.004