Development and experimental characterization of micromachined electromagnetic probes for biological manipulation and stimulation applications
We present the design, fabrication and experimental characterization of a new micromachined electromagnetic probe, which can be readily adapted to various biological manipulation and stimulation applications. The micro electromagnetic probe consists of a protruding (out-of-chip), sharp Permalloy nee...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2008-05, Vol.144 (1), p.213-221 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the design, fabrication and experimental characterization of a new micromachined electromagnetic probe, which can be readily adapted to various biological manipulation and stimulation applications. The micro electromagnetic probe consists of a protruding (out-of-chip), sharp Permalloy needle embedded into a three-dimensional gold conducting coil. The probe fabrication is carried out using traditional surface micromachining processes coupled with assembly techniques. This hybrid approach significantly reduces fabrication difficulties and provides a simple and straightforward technique to realize integrated core-coil geometries. Furthermore, by using a scanning Hall probe microscope (SHPM), a comprehensive, high-spatial resolution characterization of the probe performance (e.g. peak magnetic intensity and spatial field distribution) is achieved for the first time. The manipulation of sub-micron sized magnetic particles with the developed micro electromagnetic probe is also demonstrated. |
---|---|
ISSN: | 0924-4247 1873-3069 |
DOI: | 10.1016/j.sna.2007.12.029 |