Flexible software reliability growth model with testing effort dependent learning process
A lot of importance has been attached to the testing phase of the Software Development Life Cycle (SDLC). It is during this phase it is checked whether the software product meets user requirements or not. Any discrepancies that are identified are removed. But testing needs to be monitored to increas...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2008-07, Vol.32 (7), p.1298-1307 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A lot of importance has been attached to the testing phase of the Software Development Life Cycle (SDLC). It is during this phase it is checked whether the software product meets user requirements or not. Any discrepancies that are identified are removed. But testing needs to be monitored to increase its effectiveness. Software Reliability Growth Models (SRGMs) that specify mathematical relationships between the failure phenomenon and time have proved useful. SRGMs that include factors that affect failure process are more realistic and useful. Software fault detection and removal during the testing phase of SDLC depend on how testing resources (test cases, manpower and time) are used and also on previously identified faults. With this motivation a Non-Homogeneous Poisson Process (NHPP) based SRGM is proposed in this paper which is flexible enough to describe various software failure/reliability curves. Both testing efforts and time dependent fault detection rate (FDR) are considered for software reliability modeling. The time lag between fault identification and removal has also been depicted. The applicability of our model is shown by validating it on software failure data sets obtained from different real software development projects. The comparisons with established models in terms of goodness of fit, the Akaike Information Criterion (AIC), Mean of Squared Errors (MSE), etc. have been presented. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2007.04.002 |